Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
Sinus = Opposé/Hypoténuse ; Cosinus = Adjacent/Hypoténuse ; Tangente = Opposé/Adjacent.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Dans un triangle rectangle, le sinus d'un angle est égal au rapport de la longueur du côté opposé à cet angle sur la longueur de l'hypoténuse.
Définitions : - Le cosinus du nombre réel x est l'abscisse de M et on note cos x. - Le sinus du nombre réel x est l'ordonnée de M et on note sin x.
Pour les non scientifiques, la trigonométrie est connue principalement pour ses applications aux problèmes de mesure, cependant elle est aussi souvent employée dans des matières insoupçonnées comme en théorie de la musique ou en théorie des nombres de manière encore plus technique.
Le sinus de l'un est égal au cosinus de l'autre et réciproquement. On va démontrer que le sinus d'un angle est égal au cosinus de son complémentaire.
75 degrés est simplement 75. Et puis quatre divisé par 60 égale 0,06666. Et 12 divisé par 3600 égale 0,00333. Donc, en ajoutant ces chiffres entre parenthèses, on obtient sinus 75.06999.
Le sinus de 30 degrés est égal à 0,5.
Le sinus de 45 degrés est 0,70710 (arrondi à cinq décimales).
Calcul du sinus
Le résultat est : sin 50° = 0,766 (au millième près).
Théorème de Pythagore: "Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés".
Les relations Arcsinus, Arccosinus et Arctangente permettent de calculer la valeur d'un angle aigu d'un triangle rectangle dont on connaît les côtés.
On utilise cette loi quand on connait la mesure d'un angle et celle de son côté opposé ainsi que n'importe quelle autre valeur de côté (à gauche) ou d'angle (à droite) du triangle. En bref, il faut une paire (côté, angle) qui est complète.
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).