Les diviseurs premiers de 588 sont donc : 2 ; 3 et 7.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5. Le nombre de diviseurs de 22 est 3 ; celui de 32 est 3 et celui de 5 est 2.
Le nombre 588 peut se décomposer sous la forme 588 = 22 × 3 × 72.
Concernant 588, la réponse est : Non, 588 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 588) est la suivante : 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 49, 84, 98, 147, 196, 294, 588.
Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
Un nombre entier positif est premier s'il possède exactement deux diviseurs : 1 et lui-même. Exemples et contre-exemple : • Voici la liste des 25 premiers nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97…
Décomposer la fraction en produit de facteurs premiers
Commence par décomposer le numérateur et le dénominateur en produit de facteurs premiers. Écris le résultat des 2 décompositions sous la forme d'une fraction. Décompose le numérateur et le dénominateur de la fraction séparément. 140 = 2 x 2 x 5 x 7.
► Un entier b est un diviseur d'un autre entier a lorsque le reste de la division euclidienne de a par b vaut zéro. On dit aussi que a est un multiple de b ou que a est divisible par b.
Généralement, en mathématiques récréatives, on considère le diviseur comme tout entier naturel qui divise un autre entier sans reste. Les questions relatives aux diviseurs touchent principalement au nombre de diviseurs d'un entier et à la somme des diviseurs. Par exemple, les diviseurs de 98 sont 1, 2, 7, 14, 49 et 98.
Concernant 18, la réponse est : Non, 18 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 18) est la suivante : 1, 2, 3, 6, 9, 18. Pour que 18 soit un nombre premier, il aurait fallu que 18 ne soit divisible que par lui-même et par 1.
Par exemple, 17 est bien un nombre premier car nous ne pouvons le diviser que par 17 ou par 1. Par contre 18 n'est pas un nombre premier car il est divisible par 1, par 18 et par 2 et par 3.
Par exemple 21, 27, 33 sont impairs mais divisibles par 3, ils ne sont donc pas premiers. Pour montrer qu'un nombre entier est premier, il suffit de vérifier qu'il n'est divisible par aucun nombre premier inférieur ou égal à sa racine carrée.
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51.
On donne la décomposition en produit de facteurs premiers de 85 : 85 = 5×17.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Non, 11 111 n'est pas un nombre premier. Par exemple, 11 111 est divisible par 41 : 11 111 / 41 = 271. Pour que 11 111 soit un nombre premier, il aurait fallu que 11 111 ne soit divisible que par lui-même et par 1.
La décomposition en produits de facteurs premiers de 252 est 252 = 22 × 32 × 7. La décomposition en produits de facteurs premiers de 132 est 22 × 3 × 11. On a bien 22 × 3 × 11 = 12 × 11 = 132 et il s'agit de sa décomposition en produits de facteurs premiers.
Pour décomposer 120 en produit de facteurs premiers, saisir 120 puis valider une première fois avec B. Appuyer ensuite sur les touches q - soit Décomp pour obtenir la décomposition en facteurs premiers.
Pour décomposer un nombre en produits de nombres premiers, il faut trouver tous les nombres premiers qui divisent ce nombre. Pratiquement on part du plus petit (2) et on cherche les différents diviseurs jusqu'à obtenir 1. 5 | 5 5 est un nombre premier. 1 La décomposition est finie car le résultat est 1.