On peut distinguer 3 identités remarquables : La première égalité remarquable : (a+b)² = a² + 2ab + b² ; La deuxième égalité remarquable : (a-b)² = a² – 2ab + b² ; (a+b)²; La troisième égalité remarquable : (a+b) (a-b) = a² – b².
(a + b) (c + d) = ac + ad + bc +bd.
En mathématiques, on appelle identités remarquables ou encore égalités remarquables certaines égalités qui s'appliquent à des nombres, ou plus généralement à des variables polynomiales. Elles servent en général à accélérer les calculs, à simplifier certaines écritures, à factoriser ou à développer des expressions.
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
a3 - b3 = (a - b)( a² + ab +b²)
Les deux termes étant des cubes parfaits, factorisez à l'aide de la formule de la différence des cubes, a3−b3=(a−b)(a2+ab+b2) a 3 - b 3 = ( a - b ) ( a 2 + a b + b 2 ) où a=x et b=y . Ce site utilise des cookies pour vous garantir la meilleure expérience sur notre site web.
Le carré d'un nombre est égal au nombre multiplié par lui-même. Par exemple, 6² = 6 x 6 = 36, 11² = 11 x 11 = 121 et (a + b)² signifie (a + b) × (a + b). Il faut retenir les identités remarques par cœur pour pouvoir les utiliser et s'en servir à tout moment.
Un facteur est un terme qui intervient dans une multiplication. Exprime 56 sous la forme d'un produit de facteurs. Voici deux possibilités :56=2×28 ou 56=4×2×7 56 = 2 × 28 ou 56 = 4 × 2 × 7 Pour la première factorisation de 56 , les facteurs sont 2 et 28 .
Un facteur commun est un nombre, une variable ou une expression que l'on retrouve comme facteur multiplicatif au sein des différents termes d'une somme. Pour identifier un facteur commun il faut dans un premier temps essayer d'exprimer chaque terme de la somme comme un produit.
procédés inventés par Isaac Newton et Gottfried W. Leibniz pour trouver les diviseurs linéaires et quadratiques, un véritable algorithme général de factorisation n'a été construit que par Nicolas (I) Bernoulli et Friedrich T. Schubert.
Identités remarquables (niveau 3ème)
Le calcul littéral est un calcul avec des nombres et des lettres où chaque lettre désigne une inconnue (nombre qu'on ne connaitpas, dont on ne sait pas la valeur). Voici la formule de base du calcul littéral : ka+kb = k(a+b) ou (a+b)k.
Si x1 et x2 sont les racines d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x1)(x − x2). Si x0 est l'unique racine d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x0)2.
L'expression ab + ac est la somme des deux produits ab et ac qui ont un facteur commun a. Pour pouvoir utiliser l'égalité ab + ac = a(b + c), il faut donc mettre en évidence un facteur commun. Pour vérifier une factorisation, il suffit de la développer, on retrouve alors l'expression de départ.
Si on multiplie des facteurs non nuls (sauf 0) de même signe, le produit sera positif. Si on multiplie des facteurs non nuls de signes contraires, le produit sera négatif.
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5. Le nombre de diviseurs de 22 est 3 ; celui de 32 est 3 et celui de 5 est 2.