Propriétés : Si un quadrilatère est un parallélogramme, alors il a toutes les propriétés suivantes : - les côtés opposés sont parallèles ; - les côtés opposés sont de même longueur ; - les diagonales se coupent en leur milieu ; - les angles opposés sont de même mesure.
Remarque : Un losange est un parallélogramme particulier, il possède donc toutes les propriétés du parallélogramme: − ses côtés opposés sont parallèles ; − ses côtés opposés sont égaux ; − ses diagonales se coupent en leur milieu.
Si les diagonales d'un quadrilatère ont le même milieu, alors ce quadrilatère est un parallélogramme. Si les cotés opposés d'un quadrilatère non croisé sont de même longueur deux à deux, alors ce quadrilatère est un parallélogramme.
Si les côtés opposés d'un quadrilatère sont parallèles alors c'est un parallélogramme. Si les côtés opposés d'un quadrilatère sont de même longueurs alors c'est un parallélogramme. Si les diagonales d'un quadrilatère ont le même milieu alors ce quadrilatère est un parallélogramme.
Rectangles, losanges et carrés sont des parallélogrammes particuliers, donc ils possèdent les propriétés du parallélogramme, à savoir : - les côtés opposés sont parallèles et de même longueur, - les angles opposés sont de même mesure, - les diagonales se coupent en leur milieu.
- Si un quadrilatère a quatre côtés de même longueur alors c'est un losange. - Si un quadrilatère a des diagonales qui se coupent perpendiculairement et en leur milieu alors c'est un losange. - Si un parallélogramme a deux côtés consécutifs de même longueur alors c'est un losange.
Si un quadrilatère a trois angles droits, Alors ce quadrilatère est un rectangle. Ce quadrilatère est un rectangle. Les diagonales du quadrilatère se coupent en leur milieu.
Un parallélogramme qui a deux côtés consécutifs égaux ou des diagonales perpendiculaires est un losange.
On appelle parallélogramme un quadrilatère non aplati dont les côtés opposés sont parallèles deux à deux. 2) Une autre définition d'un parallélogramme On appelle parallélogramme un quadrilatère non croisé admettant un centre de symétrie.
Un carré est un quadrilatère qui a 4 angles droits et 4 côtés de même mesure. Le carré est donc à la fois un rectangle, un losange : le carré est donc un parallélogramme ! Le carré étant à la fois un rectangle et un losange, il en possède donc toutes leurs propriétés.
On en déduit que les diagonales [AC] et [BD] se coupent en leur milieu et sont de même longueur. Par conséquent, le quadrilatère ABCD est un parallélogramme dont les diagonales sont de même longueur. C'est donc un rectangle. Comme ses diagonales sont perpendiculaires, c'est également un losange.
Propriété : Si un quadrilatère est un parallélogramme, alors ses angles opposés ont la même mesure. Propriété : Si un quadrilatère est un parallélogramme, alors la somme de deux angles consécutifs fait 180°.
- Un parallélogramme est un quadrilatère qui a ses angles opposés égaux. II - La démonstration : Comment démontrer qu'un quadrilatère est un parallélogramme ?
Un trapèze (non croisé) dont les bases ont la même longueur est un parallélogramme, c'est-à-dire que ses deux autres côtés sont aussi parallèles.
Pour démontrer que deux droites sont parallèles, vous pouvez vérifier que leurs pentes sont égales (même rapport), ou que les angles qu'elles forment avec une troisième droite sont égaux.
Un losange est un quadrilatère qui possède 4 côtés de même mesure, des côtés opposés paralléles et des angles opposés isométriques.
Propriété 1
ce quadrilatère est un losange ; ce quadrilatère a ses quatre côtés de même longueur et ses quatre sommets distincts ; les diagonales de ce quadrilatère se coupent en leur milieu (autrement dit : c'est un parallélogramme) et elles sont perpendiculaires.
Un losange est un quadrilatère qui a quatre côtés égaux.
On peut dire que ABCD est un parallélogramme car ses côtés opposés sont parallèles. De plus, ABCD est un losange car il a deux côtés consécutifs, [AB] et [BC], qui ont la même longueur.
Propriété : Si un parallélogramme possède un angle droit, alors c'est un rectangle. Propriété : Si un parallélogramme possède des diagonales de même longueur, alors c'est un rectangle . Définition : Un losange est un quadrilatère dont les quatre côtés ont la même longueur.
Les diagonales d'un parallélogramme se coupent en leur milieu. Les côtés opposés d'un parallélogramme ont la même longueur.
Enfin, tout trapèze ou cerf-volant globalement invariant par une symétrie centrale est un parallélogramme, il a à la fois ses côtés parallèles et ses diagonales qui se coupent en leur milieu. distinction relevant, pour chacun des quadrilatères isocèles en question, d'une propriété supplémentaire des diagonales.
Les mesures des quatre angles à l'intérieur de tout quadrilatère ont une somme de 360 degrés. Cela signifie que l'angle 𝐴 plus l'angle 𝐵 plus l'angle 𝐶 plus l'angle 𝐷 est égal à 360 degrés. Les mesures des angles opposés dans un quadrilatère inscriptible ont une somme de 180 degrés.
I) Le parallélogramme.