Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...). Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Quel est l'avantage d'utiliser un test non-paramétrique ? Les tests non-paramétriques sont plus robustes que les tests paramétriques. En d'autres termes, ils peuvent être utilisés dans un plus grand nombre de situations.
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.
Test unilatéral : test statistique pour lequel on prend comme hypothèse alternative l'existence d'une différence dont le sens est connu. Test bilatérale : test statistique pour lequel on prend, comme hypothèse alternative, l'existence d'une différence, dans un sens ou l'autre.
Il s'agit d'une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée.
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...). Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Un test non paramétrique est un test d'hypothèse qui n'exige pas que la distribution de la population soit caractérisée par certains paramètres. Par exemple, de nombreux tests d'hypothèse supposent que la population obéit à une loi normale pour les paramètres µ et σ.
Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Le test de Wilcoxon compare deux séries ou groupes de données d'une même variable quantitative ou semi-quantitative. Il s'applique lorsque nous ne pouvons pas utiliser le test T de Student car les conditions de normalité des données ne sont pas validées.
Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche). Si vous avez plus de deux groupes dans votre étude, comme l'ethnicité (africaine, asiatique, blanche, etc.)
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Le test U de Mann-Whitney est donc le pendant non paramétrique du test t pour échantillons indépendants ; il est soumis à des hypothèses moins strictes que le test t. Par conséquent, le test U de Mann-Whitney est toujours utilisé lorsque la condition de distribution normale du test t n'est pas remplie.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Le test du Khi2 peut être employé si tous les effectifs théoriques sont >5. Si au moins un effectif théorique est <5 alors, le test du Khi2 avec correction de Yates, ou bien le test exact de Fisher doivent être employés.
Le test de Bartlett peut être utilisé pour comparer deux variances ou plus. Ce test est sensible à la normalité des données. Autrement dit, si l'hypothèse de normalité des données semble fragile, on utilisera plutôt le test de Levene ou de Fisher.
Le test de McNemar permet de déterminer si des proportions appariées sont différentes. Vous pouvez par exemple l'utiliser pour déterminer si un programme de formation à un effet sur la proportion de participants qui répondent correctement à une question.
unilatéral à gauche: la valeur de H1 est significativement plus petite que la valeur de H0. bilatéral: la valeur de H1 est significativement différente de la valeur de H0, soit qu'elle est plus grande, soit qu'elle est plus petite.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Les formulations pour l'hypoth`ese alternative H1 sont : 1. H0 : µ = µ0 (ou µ ≥ µ0) et 2. H0 : µ = µ0 (ou µ ≤ µ0) H1 : µ<µ0 H1 : µ>µ0 (unilatéral `a gauche).
Dans le cas d'échantillons indépendants, le test de Mann-Whitney permet de comparer deux populations. Les deux séries de valeurs sont mélangées puis ordonnées par valeurs croissantes. On identifie alors les rangs des individus du premier groupe et on calcule la somme des rangs de ces individus.
L'étude paramétrique montre l'effet des paramètres de calcul et des paramètres géotechniques sur les résultats. Pour atteindre l'objectif visé, le travail sera divisé en quatre chapitres.