Une fonction affine de coefficient directeur et d'ordonnée à l'origine est la fonction qui a un nombre associe la somme du produit de par et de . Le nombre est le coefficient directeur de la fonction affine. Le nombre est l'ordonnée à l'origine.
Définitions : Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.
La représentation d'une fonction affine est une droite. Il suffit donc de déterminer les images de deux nombres distincts, de placer les points correspondants et de tracer la droite passant par ces points.
Se dit d'une fonction du premier degré à une variable, qui correspond au produit de cette variable par un nombre réel auquel est ajouté un autre nombre réel et qui s'écrit f(x) = ax + b. Une fonction affine est représentée par une droite. Une fonction linéaire est une fonction affine.
Une fonction affine est une fonction de la forme f : x ax + b où a est un nombre réel appelé coefficient de la fonction linéaire ou coefficient de proportionnalité, et b l'ordonnée à l'origine. La représentation graphique d'une fonction linéaire est une droite. – si a > 0, alors la droite «monte».
Définition : Une fonction affine est une fonction qui peut s'écrire sous la forme : f:x ↦ ax + b, où a et b sont deux nombres réels quelconques. Remarque : toute fonction linéaire est une fonction affine telle que b = 0. La fonction f :x ↦ 3x² + 7 n'est pas une fonction affine.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
Une fonction affine f est une fonction dont la forme algébrique s'écrit f(x) = ax+b et qui est donc déterminée par les deux nombres a et b. Le nombre a est le coefficient directeur et le nombre b est l'ordonnée à l'origine. Ce vocabulaire est lié à la représentation graphique d'une fonction affine qui est une droite.
Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d vérifient y = ax + b. La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Tout d'abord une fonction linéaire a pour équation y = ax alors qu'une affine est y = ax + b. Une fonction linéaire est donc un cas particulier d'une affine, en prenant b = 0. Graphiquement, la droite linéaire passe par l'origine contrairement à l'affine. Ce qui suit est donc valable pour les deux types de fonctions.
une fonction affine
La constante m est appelée coefficient directeur et p ordonnée à l'origine. Si m est nul, alors la fonction est constante. Si p est nul alors la fonction est linéaire et sa droite représentative passe par l'origine.
Une fonction linéaire est une fonction simple des mathématiques élémentaires, qui traduit la proportionnalité et qui se traduit en langage mathématique par les termes f(x) = ax. Exemple : f(x)=2x, f(5)=2*5 = 10 on remplace x par 5.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
Pour déterminer un antécédent d'un nombre à l'aide d'une formule, il faut remplacer f ( x ) f(x) f(x) par la valeur du nombre dans la formule puis trouver une valeur de x qui la vérifie.
On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f. En chaque intersection, on trace une droite verticale et on lit la valeur de l'intersection avec l'axe des abscisses.
Une fonction affine est une fonction , définie sur , qui peut s'écrire sous la forme , avec a et b deux réels. La représentation graphique d'une fonction affine est une droite. Si a est positif, alors f est croissante sur . Si a est négatif, alors f est décroissante sur .
Reconnaître une fonction affine
la variable indépendante (x) est la même, et que la variation des valeurs consécutives de la variable dépendante (f(x)) est constante, et qu'elle ne passe pas par l'origine (0,0), elle représente une fonction affine.
Une fonction f est affine si on peut déterminer deux réels m et p tels que, pour tout x∈R,f(x)=mx+p. 2. Une fonction n'est pas affine lorsque le taux d'accroissement n'est pas constant. Pour tout réel x,f(x)=1×x+1 donc f est affine avec m=1 et p=1.
La fonction f est constante : sa représentation graphique est une droite d'équation : y = b. Cette droite est parallèle à l'axe des abscisses. On a f(x) = ax. La fonction f est linéaire : sa représentation graphique est une droite d'équation : y = ax, qui passe par l'origine du repère.
La fonction définie par f ( x ) = 2 x + 1 ou f : x ↦ 2 x + 1 est une fonction affine de coefficient directeur 2 et d'ordonnée à l'origine 1. Propriété 2 : La représentation graphique d'une fonction affine est une droite. Pour tracer une fonction affine, il suffit seulement de placer deux points de la courbe.