Isaac Newton (1643 - 1727) développe la géométrie analytique et l'utilise en astronomie. Cette application est l'origine de l'utilisation du terme vecteur.
La structure d'espace vectoriel a émergé au cours du XIXè siècle. C'est d'abord Grassmann qui, vers 1840, introduit la définition d'indépendance linéaire et de dimension. Puis c'est Peano, en 1888, qui formalise complètement la notion.
On distingue trois types de vecteurs: vecteurs libres, glissants et liés.
Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. Définition : Soit un vecteur u ! et deux points A et B tels que u ! = AB " !
Un vecteur, généralement noté →u , est un objet mathématique qui possède à la fois une grandeur, une direction et un sens. La direction et le sens constituent l'orientation du vecteur.
Le point origine du vecteur A B → \overrightarrow{AB} AB (ici le point A) est le point de départ qui en caractérise le sens. Le point extrémité de A B → \overrightarrow{AB} AB (ici le point B) est le point d'arrivée qui en caractérise le sens.
La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide. Exemples : Calculons la norme du vecteur du plan de coordonnées (5;12).
On définit l'addition ou somme de deux vecteurs →u et →v, comme le vecteur dont les composantes sont obtenues par addition des composantes correspondantes des deux vecteurs →u et →v. On note →u+v le vecteur somme. →u+→v=(ux+vx,uy+vy).
Le produit scalaire de deux vecteurs non nuls et représentés par des bipoints OA et OB est le nombre défini par OA ⋅ OB ⋅ cos(θ).
le produit vectoriel de deux vecteurs est nul si et seulement si ces deux vecteurs sont colinéaires.
Deux vecteurs sont égaux s'ils ont la même direction, le même sens et la même norme.
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
L'ensemble (ℤ, +, ×) n'est pas un corps car la plupart des éléments non nuls de ℤ ne sont pas inversibles : par exemple, il n'existe pas d'entier relatif n tel que 2n = 1 donc 2 n'est pas inversible.
Étymologie. ( XIV e siècle) Via le latin médiéval algebra , de l'arabe الجبر , āl-ǧabr (« s'assurer par l'expérience de quelque chose ») avec agglutination de l'article.
Une fonction scalaire est une fonction qui renvoie une valeur par appel. Dans la plupart des cas, vous pouvez penser que ceci renvoie une valeur par ligne. Cela contraste avec Fonctions d'agrégation, qui renvoie une valeur par groupe de lignes. Effectuer des opérations au niveau des bits sur des expressions.
En mathématiques, plus précisément en géométrie vectorielle euclidienne, la relation de Chasles est une relation permettant d'additionner deux vecteurs dans un espace affine. Par extension, elle peut aussi être utilisée en géométrie plane, en intégration, en analyse complexe, etc.
Le produit scalaire de deux vecteurs est un nombre réel, qui peut être positif, négatif ou nul.
En premier lieu, considérons le carré scalaire. Il est évident que le cosinus entre un vecteur et lui-même mesure un angle nul. Il est donc égal à 1.
Lors de la multiplication d'un vecteur par un scalaire, la norme du vecteur résultant sera égale à la norme du vecteur de départ multipliée par k en valeur absolue. Ainsi, si ∣k∣<1→ ∣ k ∣< 1 → norme du vecteur résultant sera plus petite. si ∣k∣=1→ ∣ k ∣= 1 → norme du vecteur résultant sera la même.
Tracer le représentant du vecteur
On trace une flèche issue du premier point jusqu'au deuxième point. On trace une flèche issue du premier point jusqu'au deuxième point. On nomme le représentant du nom du vecteur.
Dans la mesure où le vecteur ⃑ ? pointe vers le bas, il peut être tentant de se dire que le signe de la norme est négatif. Cependant, il faut se rappeler qu'une longueur, donc la norme, ne peut pas être négative.
En France, les normes sont élaborées et éditées par l'AFNOR qui coordonne le système de normalisation. Au niveau international, c'est l'ISO.