18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
Les diviseurs communs de 12 et 18 sont 1, 2, 3, et 6. Le PGCD (12 ; 18) est 6. Méthode 2 : Algorithme des soustractions. Propriété du PGCD : On prend deux nombres entiers strictement positifs a et b.
Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
Méthode : Algorithme d'Euclide
On effectue la division euclidienne du plus grand par le plus petit et on recommence avec le diviseur et le reste, jusqu'à ce que le reste soit nul. Le PGCD est alors le dernier reste non nul.
On écrit tous les diviseurs de 12 : 1 ; 2 ; 3 ; 4 ; 6 et 12. Les nombres 12 et 20 ont donc trois diviseurs communs : 1 ; 2 et 4.
Rappel sur le PGCD
On a vu en classe de 3ème que le PGCD de deux nombres a et b est le plus grand nombre qui divise à la fois a et b. Par exemple, le PGCD de 15 et 10 est 5. Pour déterminer le PGCD de deux nombres, on peut faire une liste des diviseurs de a puis de b et déterminer le plus grand diviseur commun.
Plus grand diviseur commun
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
Par exemple, le PGCD de 16 et 24 est 8, car il s'agit du plus grand diviseur commun entre 16 et 24. Ces nombres ont aussi d'autres diviseurs communs, soit 2 et 4, mais il ne s'agit pas de leur plus grand diviseur commun.
Exemples. Trouver le PGCD de 28 et 42 : 1.
Pour une introduction, voir Plus grand commun diviseur de nombres entiers. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
6 et 3 sont des diviseurs de 18. Remarque 1 : 1 divise tous les nombres entiers et par conséquent, tous les nombres sont leurs propres multiples.
15=1×12+3 donc le reste est 3. 12=3×4+0 donc le reste est 0. On s'arrète dès qu'on trouve un reste nul. Donc le PGCD est le dernier reste non nul.
20 a pour diviseurs 1,2,4,5,10,20. 25 a pour diviseurs 1,5,25. Le plus grand commun diviseur est 5.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
60 = 24 × 2 + 12 et 24 = 2 × 12, donc 12 est le pgcd de 60 et 24.
12 12 a des facteurs de 2 2 et 6 6 . 6 6 a des facteurs de 2 2 et 3 3 . Le plus petit multiple commun de 12,18,24 12 , 18 , 24 est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu'ils apparaissent dans un nombre ou l'autre. Multipliez 2⋅2⋅2⋅3⋅3 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 .
Les facteurs communs pour 27,36 sont 1,3,9 1 , 3 , 9 . Le plus grand facteur commun des facteurs numériques 1,3,9 1 , 3 , 9 est 9 .
Reprenons 30 et 48 : 30=2×3×5. 48=2×2×2×2×3. On remarque que le produit 2×3=6 est commun aux deux et est le plus grand produit commun, il est donc le PGCD.
Calculer le PGCD de ces nombres
P G C D ( 60 , 90 ) = 30 .
Indiquez tous les facteurs pour 72,90 pour déterminer les facteurs communs. Les facteurs communs pour 72,90 sont 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 . Le plus grand facteur commun des facteurs numériques 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 est 18 .
Donc le PGCD (60 ; 84) = 12.
On note : PGCD(72, 54) = 18.
- Affirmation B: le PGCD de 18 et de 36 est 9.
Les facteurs communs pour 45,75 sont 1,3,5,15 1 , 3 , 5 , 15 . Le plus grand facteur commun des facteurs numériques 1,3,5,15 1 , 3 , 5 , 15 est 15 .