Une fonction est dérivable sur un intervalle si elle est dérivable en tout point de cet intervalle. L'ensemble des points sur lesquels une fonction est dérivable est son ensemble de dérivabilité. En classe de première, la dérivabilité sur un intervalle est toujours précisée dans l'énoncé des exercices.
On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).
La dérivabilité se démontre usuellement de deux façons : dans l'étude locale (c'est-à-dire en se plaçant dans un voisinage du point étudié), en utilisant directement la définition de l'existence du nombre dérivé à l'aide de limites.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Pour une fonction 𝑓 ∶ 𝑋 → 𝑌 , l'ensemble de définition 𝑋 est l'ensemble des valeurs possibles telles que 𝑓 ( 𝑥 ) est définie : 𝑋 ∶ = { 𝑥 ∈ ℝ ∶ 𝑓 ( 𝑥 ) ∈ ℝ } . L'ensemble image 𝑓 ( 𝑋 ) est l'ensemble des valeurs que nous pouvons obtenir en appliquant 𝑓 à des éléments de 𝑋 : 𝑓 ( 𝑋 ) ∶ = { 𝑓 ( 𝑥 ) ∶ 𝑥 ∈ 𝑋 } .
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
La dérivée d'une fonction composée, f ∘ g , se calcule en utilisant la formule ( f ∘ g ) ′ ( x ) = g ′ ( x ) × f ′ ( g ( x ) ) . Quant aux limites d'une fonction composée, si lim x → a g ( x ) = b , nous avons que lim x → a f ∘ g ( x ) = lim x → b f ( x ) .
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
(1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a. (3) f est dérivable en b si et seulement si f est dérivable `a gauche en b.
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
la limite en 0 de n'existe pas. On ne peut alors parler ni de nombre dérivé, ni de tangente en . Les limites à droite et à gauche en 0 du rapport n'étant pas égales, on ne peut parler de limite en 0. La fonction valeur absolue n'est donc pas dérivable en 0.
Démonstration : 4)
Soit x = f − 1 ( y ) ; on a x 0 = f − 1 ( y 0 ) et par conséquent. Or est continue, donc quand tend vers y 0 , x = f − 1 ( y ) tend vers x 0 = f − 1 ( y 0 ) et le rapport x − x 0 f ( x ) − f ( x 0 ) a une limite puisque est dérivable en et que sa dérivée f ′ ( x 0 ) est non nulle.
Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.
L'ensemble de définition d'une fonction est l'ensemble des éléments de son ensemble de départ qui ont une image par cette fonction. Par exemple, celui de la fonction f : x↦x² est ℝ et celui de la fonction g : x↦1/x est l'ensemble des réels privé de 0.
Définition : Continuité d'une fonction en un point
Soit 𝑎 ∈ ℝ . On dit qu'une fonction à valeur réelle 𝑓 ( 𝑥 ) est continue en 𝑥 = 𝑎 si l i m → 𝑓 ( 𝑥 ) = 𝑓 ( 𝑎 ) .
L'ensemble ℚ a été défini par Peano, il vient de l'italien quotiente (la fraction). Il définit l'ensemble des nombres rationnels (exemples : -3 -2,5 0 1,25 1/3 2,666). Le nombre peut être décimal limité (3/4 = 0,75) ou périodique (2/3 = 0,666...). ℤ est inclus dans ℚ.
Donc n'est pas dérivable en 0. Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en 0.
La fonction racine carrée n'est pas dérivable dans son ensemble de définition. Dérivable pour tous réels strictement positifs : sauf zéro.
Par exemple, la fonction racine carrée est continue sur l'intervalle mais elle n'est pas dérivable en 0 : la fonction racine carrée est dérivable sur l'intervalle .
La continuité en un point n'implique pas la dérivabilité en ce point. La fonction valeur absolue en est un contre-exemple. −3.
En effet, 0²=0 et c'est le seul nombre qui a pour carré 0. La dernière équation n'admet aucune solution. Il n'existe aucun carré négatif.
Définition : La racine carrée de est le nombre (toujours positif) dont le carré est . Racines de carrés parfaits : √0 = 0 √25 = 5 √100 = 10 √1 = 1 √36 = 6 √121 = 11 √4 = 2 √49 = 7 √144 = 12 √9 = 3 √64 = 8 √169 = 13 √16 = 4 √81 = 9 Remarque : √−5 = ?
En mathématiques, la racine carrée de cinq, notée √5 ou 51/2, est un nombre réel remarquable ; c'est l'unique réel positif dont le carré est égal à 5. Il vaut approximativement 2,236. C'est un irrationnel quadratique et un entier quadratique (entier algébrique de degré 2).
Dérivée : la fonction valeur absolue est dérivable partout sauf pour x=0. x = 0. Soit la fonction f telle que f(x)=|x|, f ( x ) = | x | , alors pour tout x∈]−∞;0[, x ∈ ] − ∞ ; 0 [ , sa dérivée s'écrit f′(x)=−1 f ′ ( x ) = − 1 et pour tout x∈]0;+∞[ x ∈ ] 0 ; + ∞ [ nous avons f′(x)=1.