On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Soit f : [a, b] → R une fonction. (1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a.
Pour une fonction à partir de sa courbe, on lit directement sur l'axe des abscisses les valeurs entre lesquelles la courbe s'inscrit. Pour un graphe, qui est une liste de points avec les coordonnées x et y, le domaine de définition est tout simplement l'ensemble des abscisses des points, soit les valeurs de x.
Les fonctions sont souvent exprimées par une équation qui relie la variable x à son image. Ainsi, lorsque l'on veut déterminer l'image de xx par la fonction ff, il suffit de remplacer x dans l'équation par sa valeur ou son expression afin d'obtenir son image f(x) ou y.
Ici, l'ensemble de définition est le plus grand ensemble de valeurs 𝑋 telle que 𝑓 ( 𝑥 ) = 𝑥 + 2 est une opération définie pour chaque 𝑥 dans 𝑋 . Si nous prenions l'ensemble que nous avons considéré ci-dessus, 𝑋 = { − 2 ; 1 ; 2 } , on verrait naturellement que 𝑥 + 2 est défini pour chaque élément de cet ensemble.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
La dérivée, 𝑓 ′ ( 𝑥 ) est positive lorsque la courbe est au-dessus de l'axe des 𝑥 , et est négative lorsque la courbe est sous l'axe des 𝑥 .
Exemple d'utilisation : pour définie sur , sa fonction dérivée est car la dérivée de x2 est 2x (comme on a 3x2, on multiplie 2x par 3) et la dérivée de x est 1 (que l'on multiplie par -2).
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
la limite en 0 de n'existe pas. On ne peut alors parler ni de nombre dérivé, ni de tangente en . Les limites à droite et à gauche en 0 du rapport n'étant pas égales, on ne peut parler de limite en 0. La fonction valeur absolue n'est donc pas dérivable en 0.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
Si une fonction est continue sur un intervalle, sa représentation graphique est en un seul morceau. Si la fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points.
Graphiquement, si la fonction est définie mais non dérivable en un point, on observe un point anguleux, c'est-à-dire que le tracé de la courbe est « cassé ». Pourquoi ? Parce que la tangente à gauche du point n'est pas la même qu'à droite.
Graphiquement, la dérivée d'une fonction correspond à la pente de sa droite tangente en un point spécifique. L'illustration qui suit permet de visualiser la droite tangente (en bleu) d'une fonction quelconque en deux points distincts. Remarquez que l'inclinaison de la droite tangente varie d'un point à l'autre.
Lorsque sur un intervalle les nombres dérivés sont positifs, c'est qu'à cet endroit-ci la fonction est croissante. Graphiquement, ça se traduit par une courbe qui monte et une tangente qui en fait de même puisque son coefficient directeur est positif. Et inversement sur les intervalles où le nombre dérivé est négatif.
Si f est une fonction qui va de [a,b] dans R et si x0∈[a,b], x 0 ∈ [ a , b ] , le taux d'accroissement de f en x0 est la fonction définie, là où c'est possible, par Tx0(h)=f(x0+h)−f(x0)h. T x 0 ( h ) = f ( x 0 + h ) − f ( x 0 ) h .
Si F est une fraction rationnelle à coefficients réels, le domaine de définition de F est l'ensemble R privé des pôles réels. une fonction rationnelle écrite sous forme irréductible. La division euclidienne de P par Q s'écrit alors P = EQ + R avec d(R) < d(Q).
L'ensemble de définition d'une fonction est l'ensemble des éléments de son ensemble de départ qui ont une image par cette fonction. Par exemple, celui de la fonction f : x↦x² est ℝ et celui de la fonction g : x↦1/x est l'ensemble des réels privé de 0.
Une fonction est une relation mathématique qui prend une valeur et lui en associe une autre. On note souvent f la fonction et x le nombre de départ. On note f(x) le nombre d'arrivée. Par exemple, fonction f(x) = 2x + 3 est une fonction qui a tout x associe 2x+3.
On dit qu'on peut évaluer f en (x,y,z) et f (x,y,z) est la valeur de f en (x,y,z). Si f est une fonction (à 2 ou 3 variables), l'ensemble des valeurs en lesquelles on peut évaluer f est le domaine de définition de f . On note D(f ). f : R×R → R (x,y) → 1 x − y .
L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.