Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2. Commence par calculer 2 × aire.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
La formule de l'aire d'un triangle est : Aire d'un triangle = (Base × hauteur) : 2 soit : A = (B × h) : 2. Pour calculer l'aire d'un triangle rectangle, on peut utiliser la formule de l'aire d'un rectangle, mais il faudra diviser le résultat obtenu par 2.
Pour calculer l'aire d'un triangle quelconque, on multiplie la base par la hauteur puis on divise par 2.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Nous connaissons la valeur de l'angle et la valeur de son côté adjacent, nous pouvons utiliser les relations suivantes : cos (angle) = côté adjacent / hypoténuse , afin de déterminer la valeur de l'hypoténuse.
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Si par exemple le sommet de l'angle droit est A et le coté [BC] l'hypoténuse alors la relation de Pythagore s'écrit:BC²=AB²+AC² . donc ,le th. de Pyth. met en relation les longueurs des cotés dans un triangle rectangle et il permet de calculer l'une de ses longueurs à partir des deux autres .
Dans le cas d'un triangle rectangle, les côtés adjacents à l'angle droits constituent une base et sa hauteur. Par conséquent, pour calculer l'aire d'un triangle rectangle, il faut multiplier les longueurs des deux côtés adjacents à l'angle droit et diviser le résultat par 2.
Conclusion : Le théorème de Pythagore s'applique au triangle rectangle seulement et permet de calculer un côté de celui-ci lorsque l'on connaît les deux autres.
Théorème de Pythagore: "Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés". Le théorème de Pythagore permet de calculer la longueur d'un côté d'un triangle rectangle, à condition de connaitre la longueur des 2 autres côtés.
La première chose à faire pour calculer la hauteur d'un triangle consiste à écrire le théorème de Pythagore, c2 = a2 + b2, où c est l'hypoténuse (le côté opposé à l'angle droit). Inversez le théorème pour résoudre a2 , c'est-à-dire a2 = c2 - b2 .
En Orient, l'indien Aryabhata l'Ancien (476 ; 550) utilise la demi corde et donne les premières tables de sinus. On retrouve la configuration du sinus dans le triangle rectangle telle qu'elle est enseignée aux collégiens aujourd'hui. Aryabhata est le premier à voir la trigonométrie hors du cercle.
Pour un triangle rectangle dont l'on nomme les côtés A, B et C, cela donne la formule : A² + B² = C².
L'aire d'un triangle est égale au produit de la longueur d'un côté du triangle (base relative b) par sa hauteur h relative divisé par 2. Aire (ABC) = (base × hauteur) ÷ 2 = (b × h) ÷ 2.
Aire[modifier | modifier le wikicode]
L'aire du triangle ABC, rectangle en A, est la moitié du produit des longueurs AB et AC. Ces longueurs sont égales. On obtient donc l'égalité : A i r e ( A B C ) = A B 2 2 {\displaystyle Aire(ABC)={\frac {AB^{2}}{2}}}
L'unité de mesure est le carré (rouge ici). Longueur L = 5 Largeur l = 3 Il y a en tout 5 x 3 = 15 carrés Si le carré rouge fait 1cm de coté, alors le rectangle fait 15 cm².
Le périmètre est le tour de la figure. Il faut donc additionner les longueurs des trois côtés pour obtenir le périmètre. La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle.
produit de l'hypoténuse par la hauteur issue du sommet de l'angle droit. Cette formule permet de calculer la hauteur du triangle rectangle : h = ba/c.