Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
La formule pour calculer le cosinus en trigonométrie
Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
COS : le nombre de m² constructibles par m² de sol
Le COS est fixé par le plan local d'urbanisme (PLU) et peut varier dans certaines zones. Il se calcule en m² constructibles par m² de sol, exemple : terrain (390 m²) × COS (0,4) = construction possible de 156 m².
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h). Représentation graphique sur un intervalle de deux périodes de la fonction cosinus. Le cosinus est habituellement cité en deuxième parmi les fonctions trigonométriques.
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Trigonométrie Exemples
La valeur exacte de cos(30°) cos ( 30 ° ) est √32 . Le résultat peut être affiché en différentes formes.
Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).
Quels moyens mnémotechniques utiliser en trigonométrie ? Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Trigonométrie Exemples
La valeur exacte de cos(0) est 1 .
Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
Le cosinus d'un angle aigu est égal au rapport de la longueur du côté adjacent à l'angle par celle de l'hypoténuse du triangle.
Important! Généralement, on utilise la loi des cosinus dans deux situations : lorsqu'on connait les mesures de deux côtés et de l'angle qu'ils forment dans le triangle ce qui permet de trouver la mesure du troisième côté (comme dans le triangle de gauche ci-dessous);
Dans un triangle quelconque, relation qui permet d'établir que le carré d'un côté est égal à la somme des carrés des deux autres côtés moins deux fois le produit de ces côtés par le cosinus de l'angle qu'ils forment. Dans le triangle ABC ci-dessous, la loi du cosinus prend les trois formes suivantes : a2=b2+c2–2bccosα
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
Formules fondamentales :
cotg x = 1. tg x = sin x / cos x. cotg x = cos x / sin x.
La longueur du cercle trigonométrique est égale à 2π. En effet, son rayon est 1 donc P = 2πR = 2π x 1 = 2π Ainsi, à un tour complet sur le cercle, on peut faire correspondre le nombre réel 2π. On définit alors une nouvelle unité d'angle : le radian, tel qu'un tour complet mesure 360° ou 2π radians.
Quand θ est entre π et 3π/2, le sinus et le cosinus sont tous les deux négatifs. Et quand θ est dans le quatrième quadrant (en bas à droite) le cosinus est positif, et le sinus est négatif.
Pour la tracer, on construit un rectangle permettant d'encadrer un cycle, puis on le reproduit. Avant de tracer cette fonction, il importe de définir certains termes et leurs liens avec les paramètres a, b, h et k de la règle de la fonction cosinus : f(x)=acos(b(x−h))+k. f ( x ) = a cos ( b ( x − h ) ) + k .
Dans un triangle rectangle, le cosinus d'un angle est égal au rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Le cosinus d'un angle aigu est donc un nombre compris entre 0 et 1. Intérêt : La formule du cosinus d'un angle dans un triangle rectangle permet de calculer soit la longueur d'un côté soit un des angles de ce triangle.
Trigonométrie Exemples
La valeur exacte de cos(90) est 0 .
Soit racine carrée de trois sur deux. Ensuite, le cosinus de 60 degrés est égal à la longueur du côté adjacent sur la longueur de l'hypoténuse. Cela fait un sur deux ou un demi. Enfin, la tangente de 60 degrés est égale à la longueur du côté opposé sur la longueur du côté adjacent.