a. On calcule : 126 = 2 × 63 = 2 × 7 × 9 = 2 × 32 × 7. On a aussi : 90 = 2 × 45 = 2 × 5 × 9 = 2 × 32 × 5.
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2. 25 n'est pas divisible par 3. 3 est un nombre premier. On poursuit donc avec 5 (car 4 n'est pas premier) On poursuit donc avec 3.
Ainsi, les entiers qui divisent à la fois les nombres 126 et 90 sont donc : - 1 ; - 2 ; - 3 ; - 2 × 3 = 6 ; - 32 = 9 ; - 2 × 32 = 18. c. D'après la question précédente, le grand entier qui divise à la fois les nombre 126 et 90 est 18.
Concernant 126, la réponse est : Non, 126 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 126) est la suivante : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Concernant 90, la réponse est : Non, 90 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 90) est la suivante : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90.
1. Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Pour une division par 90, 900 … décaler la virgule vers la gauche d'autant de position que de 0. Partager le nombre en groupe de deux chiffres. Ajouter le prochain groupe à la somme (y compris retenues) que vous venez de trouver. Le reste est égal à la somme réalisée avec la dernière somme.
Décomposer un nombre, c'est indiquer la position (la classe et le rang) de chacun des chiffres qui composent ce nombre. 42 603 = 4 × 10 000 + 2 × 1 000 + 6 × 100 + 3 × 1.
Un nombre entier relatif est un nombre entier qui peut être positif, négatif ou nul. L'ensemble des nombres relatifs se note . (« Z » est l'initiale du mot « Zahl » qui signifie « nombre » en allemand). On dit aussi un entier relatif au lieu de nombre entier relatif.
90/18=5. 90/30=3. 90/45=2. Ces nombres sont: 2,3,5,6,9,10,15,18,30,45.
La décomposition en produits de facteurs premiers de 252 est 252 = 22 × 32 × 7. La décomposition en produits de facteurs premiers de 132 est 22 × 3 × 11. On a bien 22 × 3 × 11 = 12 × 11 = 132 et il s'agit de sa décomposition en produits de facteurs premiers.
Pour décomposer un nombre en ses facteurs premiers, on le divise successivement par 2, 3, 5, 7, ... soit la suite des nombres premiers et on divise au besoin plus d'une fois par le même nombre. Ainsi, pour trouver les facteurs premiers de 378, on fait ces opérations. On divise 378 par 2 ; on obtient 189.
Algèbre Exemples. 125 a des facteurs de 5 et 25 .
Décomposer en produit de facteurs premiers
On décompose 120 en produit de facteurs premiers : 120 est divisible par 2 donc 120= 2\times 60. 60 est divisible par 2 donc 60= 2\times 30.
La décomposition en facteurs premiers de 140 est : 140 = 2×2×5×7. La décomposition en facteurs premiers de 870 est : 870 = 2×3×5×29.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 630) est la suivante : 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 630. Pour que 630 soit un nombre premier, il aurait fallu que 630 ne soit divisible que par lui-même et par 1.
Décomposer un nombre à trois chiffres consiste à repérer combien on y trouve de centaines, dizaines unités. Le nombre 345 comporte donc 3 centaines, 4 dizaines et 5 unités. Ainsi, si on devait le décomposer, on écrirait : 345 = 300 + 40 + 5.
48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48. 90 est aussi un multiple de 6, car 6 × 15 = 90 ; tout comme 342 car 6 × 57 = 342.
Chaque prochain multiple de 9 est obtenu en ajoutant 9 : 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 279, 288, 297, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, …
Multiplier (diviser) par 0,125 revient à diviser (multiplier) par 8 : Exemple 31 : 44 × 0,125 = 44 ÷ 8 = 5,5. Exemple 32 : 44 ÷ 0,125 = 44 × 8 = 352.
126 ∶ 20 = 6,3 , donc 126 n'est pas divisible par 20. 126 ∶ 6 = 21 , donc 126 est divisible par 6.
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5. Le nombre de diviseurs de 22 est 3 ; celui de 32 est 3 et celui de 5 est 2.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.