Pour déterminer les solutions d'une équation de la forme f(x) = k, on lit les abscisses des points d'intersection de la courbe avec la droite horizontale d'équation y = k. Dans le cas d'une inéquation f(x) < k, on lit les abscisses des points de la courbe situés au-dessous de la droite d'équation y = k.
En général, la lecture graphique ne donne que des valeurs approchées des images. Par exemple, l'image de -1 est comprise entre -1 et -2. les antécédents du nombre 3 par cette fonction sont -1 et 2. On lit le nombre 3 sur l'axe des ordonnées et les deux antécédents sur l'axe des abscisses.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
Si une fonction est continue sur un intervalle, sa représentation graphique est en un seul morceau. Si la fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points.
Pour déterminer si cette représentation graphique correspond à une fonction, on ajoute une droite verticale sur le graphique et on vérifie le nombre de points d'intersection avec la courbe représentative. S'il y a plus d'un point d'intersection, la représentation graphique ne correspond pas à une fonction.
Plus généralement, si la tangente à une courbe représentative est verticale, la dérivée n'est pas définie.
L'équation de la tangente est donc de la forme : y = f '(a) x + p où p est un réel à déterminer.
Conclusion: Si f est une fonction dérivable sur un intervalle contenant un réel a, la tangente à la courbe représentative de f au point d'abscisse a a pour équation: y = f(a) + f′(a)(x - a) .
Dans le cas où f'(x) = 0, cela veut dire que le coefficient directeur de la tangente est nul donc que cette dernière est “horizontale” et parallèle à l'axe des abscisses.
La représentation graphique
L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.
Pour déterminer un antécédent d'un nombre à l'aide d'un tableau, il suffit de repérer ce nombre dans la deuxième ligne du tableau ( f ( x ) f(x) f(x)) et de lire son antécédent sur la première ligne ( x x x).
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
Pour déterminer l'image de 2 par f, on commence par repérer 2 sur l'axe des abscisses, puis on lit l'ordonnée de l'unique point de la courbe d'abscisse 2. On peut lire que l'image de 2 par la fonction f est 3. Pour déterminer le ou les antécédents d'un nombre b par f , il suffit de résoudre l'équation ( )= f x b .
Soit f la fonction définie par f:x->f(x)=x². Déterminer les antécédents (s'ils existent) de 4,1,1/4,0,-1. On résout : f(x)=4 soit x²=4 soit x=2 ou x=-2. Les antécédents de 4 par f sont 2 et -2.
Trouver le ou les antécédents d'une valeur a par une fonction f revient à résoudre équation f(x)=a f ( x ) = a . Exemple : Calculer l' antécédent de 1 par la fonction affine f(x)=2x+1 f ( x ) = 2 x + 1 c'est résoudre 2x+1=1⟺x=0 2 x + 1 = 1 ⟺ x = 0 .
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Il existe de nombreuses techniques pour tracer la courbe représentative d'une fonction. Par exemple, pour tracer la courbe d'équation 𝑦 = 𝑓 ( 𝑥 ) , on peut résoudre 𝑓 ( 𝑥 ) = 0 pour trouver les points d'intersection avec l'axe des 𝑥 ; nous savons que le point d'intersection avec l'axe des 𝑦 est 𝑓 ( 0 ) .
Pour étudier la position de la courbe par rapport à une tangente T d'équation y=ax+b, on détermine le signe de f\left(x\right) -\left(ax+b\right). On appelle C_f sa courbe représentative et T celle de sa tangente au point d'abscisse x= 0{,}5.
La tangente TA au point A d'abscisse a de Cf a pour équation y=f′(a)x+p car, par définition, f′(a) est le coefficient directeur de cette droite. Il faut maintenant déterminer p. Comme le point A(a;f(a)) appartient à TA, ses coordonnées vérifient l'équation réduite de TA. On a donc f(a)=f′(a)×a+p, , soit p=f(a)−f′(a)×a.
Nous pouvons calculer les rapports trigonométriques de cette façon : Sinus = Opposé/Hypoténuse ; Cosinus = Adjacent/Hypoténuse ; Tangente = Opposé/Adjacent.
lim x → a f ( x ) − f ( a ) x − a = ℓ . Si ℓ∈R, ℓ ∈ R , ceci prouve que f f est dérivable en a a et que f′ f ′ est continue en a a puisque limx→af′(x)=f′(a)=ℓ.
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
Soit f : [a, b] → R une fonction. (1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a.