Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.
Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .
Si une fonction f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b] [a;b] alors, pour tout réel k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] [a; b] [a;b].
On calcule le discriminant Δ = b2 – 4ac de la fonction polynôme f définie par f(x) = ax2 + bx + c. Étudier le signe du discriminant Δ. Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
donc, d'après le théorème des valeurs intermédiaires, il existe AU MOINS un réel alpha de ]a;b[ tel que f(alpha)=0. donc f définit une bijection de [a;b] sur f([a;b]). Par conséquent il existe UN UNIQUE réel alpha de ]a;b[ tq f(alpha)=0.
D'après le théorème des valeurs intermédiaires (TVI), comme 0 est compris entre f(0) et f(2), il existe un réel α compris entre 0 et 2 tel que f(α)=0. Comme f(0) et f(2) sont tous les deux non nuls, ce réel α appartient à l'intervalle ouvert ]0, 2[.
Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c appartenant à l'intervalle [a ; b] tel que f(c) = k. Autrement dit, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet au moins une solution dans l'intervalle [a ; b].
Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.
À retenir. Pour déterminer l'ensemble de définition d'une fonction, on lit les abscisses des points de la représentation graphique. On l'écrit sous la forme d'un intervalle ou d'une réunion d'intervalles.
Le discriminant du polynôme X 2 + 4 X + 5 vaut − 4 donc ce polynôme n'a pas de racine réelle. Dans ce cas, P a une unique racine réelle : -1 ,et trois racines dans C :-1, 2+i, 2-i .
On distingue alors trois cas : Si (d) et (d') sont parallèles et distinctes, le système (S) n'admet aucun couple solution. Si (d) et (d') sont sécantes, le système (S) admet une solution unique.
S'il existe une ligne du type 0=b′i 0 = b i ′ avec b′i non nul, alors le système n'admet pas de solutions. Si au contraire il n'y a pas de ligne 0=b′i 0 = b i ′ , alors le système admet toujours une ou une infinité de solutions.
Il existe une unique application u:N⟶f(N) telle que : u(0)=a et ∀n∈N, u(n+1)=f(u(n)). On note alors (un)n∈N cette application (qui est une suite) et on l'appelle "suite récurrente (réelle) définie par u0=a et ∀n∈N, un+1=f(un)".} J'ai beau essayer de montrer par récurrence ce résultats, je n'y arrive pas !
Si les droites sont parallèles entre elles, on aura plutôt une infinité de solution si elles sont confondues, ou l'absence de solution si elles sont disjointes. On peut résoudre un système d'équations linéaires de plusieurs façons.
Un ensemble-solution est l'ensemble des valeurs vérifiant une équation ou une inéquation.
Si l'on veut trouver l'ensemble de définition, autrement dit l'ensemble des x, il suffit de lire graphiquement l'ensemble des abscisses des points de la courbe représentant f.
Si tous les coefficients aij sont nuls, et si l'un au moins des bi est non nul, alors le système n'admet pas de solution : S = ∅. Si l'un des coefficients aij est non nul, on peut le choisir comme pivot.
On peut dire que c'est une équation impossible. L'équation 1x=0 [inconnue x, ensemble de tous les nombres, sauf zéro.] Cette équation n'a pas de solution.
Méthode : Pour résoudre une inéquation produit du premier degré, on doit : 1) Etudier les signes du premier puis du second facteur dans un tableau de signes. 2) Utiliser la règle de signes pour obtenir le signe du produit et trouver l'ensemble des solutions de l'inéquation en faisant attention au sens de l'inégalité.
L'équation f(x)=0 n'a pas de solution donc la courbe de f ne traverse pas l'axe des abscisses. L'équation f(x)=0 a une solution unique donc la courbe de f admet son extremum sur l'axe des abscisses.
Pour rechercher une solution particulière, on utilise souvent la méthode de variation de la constante : on cherche une solution sous la forme λ(x)e−A(x) λ ( x ) e − A ( x ) où λ:I→R λ : I → R est une fonction dérivable et on regarde quelle condition doit vérifier λ pour que cette fonction soit une solution de l' ...
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.