On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Les rapports trigonométriques nous disent que le sinus de l'angle 𝜃 est égal au côté opposé sur l'hypoténuse. Le cosinus de l'angle 𝜃 est égal au côté adjacent sur l'hypoténuse. Et la tangente de l'angle 𝜃 est égal au côté opposé sur le côté adjacent. Une façon de s'en souvenir est d'utiliser l'acronyme SOHCAHTOA.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
On utilise cette loi quand on connait la mesure d'un angle et celle de son côté opposé ainsi que n'importe quelle autre valeur de côté (à gauche) ou d'angle (à droite) du triangle. En bref, il faut une paire (côté, angle) qui est complète.
75 degrés est simplement 75. Et puis quatre divisé par 60 égale 0,06666. Et 12 divisé par 3600 égale 0,00333. Donc, en ajoutant ces chiffres entre parenthèses, on obtient sinus 75.06999.
Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter. Ceci est utilisable seulement avec la calculatrice scientifique. Voilà, c'est tout.
Sinus = Opposé/Hypoténuse ; Cosinus = Adjacent/Hypoténuse ; Tangente = Opposé/Adjacent.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Dans un triangle rectangle, on appelle cosinus d'un angle aigu le rapport du côté adjacent à l'angle et de l'hypoténuse. Exemple et notation : cos a = AC AB . Dans un triangle rectangle, on appelle sinus d'un angle aigu le rapport du côté opposé à l'angle et de l'hypoténuse.
Les sinus frontaux sont situés dans l'os frontal, au-dessus du nez et derrière les sourcils. Ces 2 espaces creux sont séparés par une mince cloison osseuse. Les sinus ethmoïdaux sont de petits espaces creux situés dans l'os ethmoïde, sur l'arête du nez, au-dessus des fosses nasales et entre les yeux.
Dans un triangle rectangle, le cosinus d'un angle est égal au rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Ainsi, on en déduit l'égalité suivante. sinx=cos(x−h)sinx=cos(x−π2)Cette même égalité est utilisée lorsqu'on travaille avec les identités trigonométriques.
Comme l'angle 45° se situe dans le deuxième quadrant, cos(45°) est négatif. On peut donc en déduire que cos(45°) = -√1/2 = -0,7071.
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Le sinus de 𝐴 moins 𝐵 est égal à sin 𝐴 cos 𝐵 moins cos 𝐴 sin 𝐵. Nous pouvons donc réécrire sin 180 moins 𝑥 comme sin 180 multiplié par cos 𝑥 moins cos 180 multiplié par sin 𝑥 Nous savons que le sinus de 180 degrés est égal à zéro. Le cos de 180 degrés est égal à moins un. Zéro multiplié par cos 𝑥 est égal à zéro.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
La valeur exacte de cos(60°) cos ( 60 ° ) est 12 . Le résultat peut être affiché en différentes formes.
Sa représentation graphique est symétrique par rapport à l'origine du repère. Propriété : Les fonctions cosinus et sinus sont dérivables en 0 et on a : cos'(0) = 0 et sin'(0)=1. cos(x + h) − cosx h = −sinx .
Calcul du sinus
Le résultat est : sin 50° = 0,766 (au millième près).
Le sinus de 30 degrés est égal à 0,5.