On appelle vecteur directeur de (D) tout vecteur non nul colinéaire à . Autrement dit, le vecteur donne la direction de la droite (D). Tous les vecteurs colinéaires non nuls à sont aussi vecteurs directeurs de (D) : il existe donc une infinité de vecteurs directeurs d'une droite, tous colinéaires entre eux.
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
La direction du vecteur est celle de la 'droite' dans laquelle est inclus le vecteur, le sens est donné par l'orientation du segment: 'vers la gauche' ou bien 'vers la droite', la norme correspond à la longueur du segment. Le sens est déterminé par la flèche.
On appelle vecteur normal de la droite (D) tout vecteur (non nul) orthogonal à un vecteur directeur de la droite. Si l'équation cartésienne de (D) est ax+by+c=0, alors un vecteur normal de (D) est le vecteur de coordonnées (a,b).
On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
Il est facile de déterminer un vecteur directeur. Si la droite est écrite sous forme réduite (soit y=ax+b y = a x + b ), le vecteur →u(1;a) u → ( 1 ; a ) fait l'affaire. Si son équation apparaît sous forme cartésienne, on prend →u(−β;α) u → ( − β ; α ) ou →u(β;−α) u → ( β ; − α ) .
Deux droites sont perpendiculaires si et seulement si le produit de leurs pentes est égal à -1. Autrement dit, si m1 et m2 sont les pentes de deux droites, alors elles sont perpendiculaires si m1 * m2 = -1.
Pour cela, on pense à utiliser →n un vecteur normal du plan et →u un vecteur directeur de la droite . Si →n⋅→u=0 alors la droite est parallèle au plan. Si →n⋅→u≠0 alors la droite est sécante au plan. Si →n et →u sont colinéaires alors la droite est perpendiculaire au plan.
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Propriété : Deux vecteurs colinéaires non nuls ont la même direction. Conséquences géométriques : Dire que les vecteurs et sont colinéaires signifie que les points A, B, C sont alignés. Dire que les vecteurs non nuls et sont colinéaires signifie que les droites (AB) et (CD) sont parallèles.
Si on connaît les coordonnées (a ; b) et (c ; d) de deux points d'une droite, on peut calculer son coefficient directeur m. On peut ensuite écrire immédiatement qu'une équation de cette droite est y - b = m(x - a).
Lorsque deux vecteurs ont même direction (ce qui correspond à "parallèles") on dit que les vecteurs sont colinéaires. Ainsi, deux vecteurs et sont colinéaires s'il existe un nombre k tel que c'est à dire qu'un vecteur est un multiple de l'autre. Le vecteur nul est colinéaire à tout vecteur.
Le vecteur directeur d'une droite est un vecteur non nul parallèle à la droite. Afin de trouver le vecteur directeur, ⃑ 𝑑 , de la droite passant par les points 𝐴 et 𝐵 , on remarque que cette droite doit avoir la même direction que le vecteur allant de 𝐴 à 𝐵 .
D'après un théorème du cours, si ax + by + c = 0 est une équation cartésienne d'une droite (d), alors le vecteur est un vecteur directeur de (d) ; à l'aide du vecteur directeur , placer un second point de la droite à partir du point A ; relier les deux points pour obtenir la droite souhaitée.
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Les vecteurs directeurs permettent d'étudier le parallélisme de deux droites. Théorème : Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs sont colinéaires. Il existe beaucoup de couples de vecteurs directeurs du plan.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point.
Remarque : deux vecteurs orthogonaux forment un angle droit. Étant donnée une droite (D), on appelle vecteur normal à (D) tout vecteur non nul orthogonal à un vecteur directeur de (D). La direction d'un vecteur normal à une droite donne la direction de l'une de ses perpendiculaires. est un vecteur directeur de (D).
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires. - Exact. La droite verte est perpendiculaire à la noire en E. Donc, la noire est aussi perpendiculaire à la verte.
Définition : Deux droites perpendiculaires sont deux droites qui se coupent en formant un angle droit.
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
En utilisant la formule. Une équation cartésienne de droite est de la forme ax+by+c=0. On peut déterminer une équation cartésienne de la droite \left(d\right) lorsque l'on connaît un point de la droite et un vecteur directeur de la droite.
On calcule la valeur du coefficient directeur directeur m à partir des coordonnées des points A et B : . On lit sur le graphique la valeur de l'ordonnée à l'origine p (c'est l'intersection entre la droite et l'axe des ordonnées). On trouve p = –2. L'équation de la droite (d2) est donc : y = x – 2.