si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle.
Résumés. Nous étudions plusieurs démonstrations de la caractérisation suivante des fonctions constantes : une fonction, définie sur un intervalle, dérivable est constante si, et seulement si, sa dérivée est nulle.
Une fonction constante de la forme 𝑦 = 𝑎 ne peut être que positive, négative ou nulle. Son signe reste toujours le même quel que soit l'intervalle. Une fonction affine de la forme 𝑦 = 𝑚 𝑥 + 𝑏 est toujours positive, négative et nulle pour différentes valeurs de 𝑥 avec 𝑚 différent de 0.
Si a = 0, f(x) = b, f est constante et la droite est parallèle à l'axe des abscisses.
Une fonction constante, c'est une fonction qui ne varie pas, et donc naturellement elle a une dérivée nulle.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.
Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a. (3) f est dérivable en b si et seulement si f est dérivable `a gauche en b.
Énoncé On appelle généralement fonction nulle la fonction constante définie sur l'ensemble des nombres réels ou complexes par : ƒ(x) = 0.
On dit que : a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
Si une suite de fonctions ( ) converge simplement sur vers une fonction , si la suite ( ) converge uniformément sur tout fermé borné de et si les sont continues sur , alors est continue sur .
Une constante est un objet dont l'état reste inchangé durant toute l'exécution d'un programme. On ne peut jamais modifier sa valeur et celle-ci doit donc être précisée lors de la définition de l'objet. Une variable est un objet dont le contenu peut être modifié par une action.
Donc : toute fonction linéaire est aussi une fonction affine. * Si a = 0, l'expression devient : f (x) = b . On obtient alors une fonction constante. Donc : toute fonction constante est aussi une fonction affine.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Fonction définie dans l'ensemble des nombres réels par une relation de la forme f(x) = k, où k est un nombre réel. Le graphique d'une fonction constante est une droite horizontale, parallèle à l'axe des abscisses.
Si f ^ { \prime } est strictement positive sur \text{I,} sauf pour un nombre fini de réels où elle s'annule, alors f est strictement croissante sur \text{I.} Si f ^ { \prime } est strictement négative sur \text{I,} sauf pour un nombre fini de réels où elle s'annule, alors f est strictement décroissante sur \text{I.}
Limites des suites géométriques. Soit (un) une suite géométrique de raison q et de premier terme u0 = 0. si q > 1, la suite diverge vers +∞ si u0 > 0, vers −∞ si u0 < 0. si q = 1, la suite (un) est constante et converge vers u0.
Pour montrer qu'une suite est arithmétique, il faut démontrer que u n + 1 − u n est une constante, pour tout . Pour calculer la raison d'une suite arithmétique, nous pouvons utiliser la définition par récurrence d'une suite arithmétique, u n + 1 = u n + r .
Déterminer le sens de variation de la suite
Lorsque tous les termes sont strictement positifs, le rapport \dfrac{u_{n+1}}{u_n} = q donne le sens de variation : si 0<q\leq 1, la suite est décroissante. si 0<q< 1, la suite est strictement décroissante. si q=1, la suite est constante.
Une fonction réelle f est nulle part continue si son extension hyperréelle naturelle a la propriété que chaque x est infiniment proche d'un y tel que la différence f(x) − f(y) est appréciable (c'est-à-dire non infinitésimale ).
Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz. Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Pierre de Fermat et Isaac Barrow notamment.
Dire que f n'est pas identiquement nulle sur I signifie que la négation de ce qui précède est vraie, i.e.\ qu'il existe x dans I tel que f(x)≠0.
Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.
la limite en 0 de n'existe pas. On ne peut alors parler ni de nombre dérivé, ni de tangente en . Les limites à droite et à gauche en 0 du rapport n'étant pas égales, on ne peut parler de limite en 0. La fonction valeur absolue n'est donc pas dérivable en 0.
a) La fonction f admet une limite en x0 (c'est-`a-dire, f est continue en x0) si et seulement si elle admet f(x0) comme limite `a droite et `a gauche en x0. b) Si f admet des limites distinctes `a droite et `a gauche en x0, alors f n'admet pas de limite en x0.