Le centre du cercle circonscrit est le point de concours des 3 médiatrices du triangle. En pratique, il suffit de tracer deux médiatrices pour déterminer le centre du cercle circonscrit à un triangle. On trace les médiatrices du triangle (il suffit d'en tracer deux).
La relation d'Euler donne la distance d du centre du cercle inscrit au centre du cercle circonscrit : d2 = R2 - 2Rr (avec R rayon du cercle circonscrit, r celui du cercle inscrit) .
Si on considère le fameux triangle (rectangle) de Pythagore pour lequel a = 3, b = 4 et c = 5, le rayon du cercle inscrit vaut donc la moitié de 3 + 4 – 5, soit 1.
Rayon. où S désigne l'aire du triangle. La relation d'Euler donne la distance d du centre du cercle circonscrit au centre du cercle inscrit, soit d2 = R2 – 2Rr (où r est le rayon du cercle inscrit).
Caractérisation du triangle rectangle
Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de son hypoténuse et la médiane relative à l'hypoténuse a pour mesure la moitié de celle de l'hypoténuse.
Prop : Si un triangle est rectangle, alors le centre de son cercle circonscrit est le milieu de son hypoténuse.
Pour cela vous choisissez un point A quelconque de la circonférence et vous le joignez à deux autres points distincts de la circonférence,B et C. Les cordes AB et AC ne sont pas parallèles. Vous tracez les deux médiatrices de AB et AC. Ces deux médiatrices se coupent en un point O qui est le centre cherché du cercle.
Cercle circonscrit à un triangle
Le centre du cercle est donc équidistant des sommets du triangle. Afin de trouver ce centre, il faut tracer les médiatrices des triangles, qui sont les droites passant par le milieu des côtés perpendiculairement et le centre se trouve au point de concours des médiatrices.
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de 𝐴 𝐵 en divisant par deux chacune les distances horizontales et verticales entre 𝐴 et 𝐵 .
Cercle - Points clés
Les cercles peuvent être décrits sous la forme d'une équation où le centre du cercle est (a, b) et le rayon du cercle est r. L'équation d'un cercle peut également s'écrire sous la forme x 2 + y 2 + 2 a x + 2 b x + c = 0 où le centre du cercle est (-a, -b) et le rayon du cercle est a 2 + b 2 − c .
Le cercle circonscrit à un triangle rectangle a la particularité d'admettre pour diamètre l'hypoténuse de ce triangle rectangle. Le centre du cercle circonscrit se trouve donc au milieu de l'hypoténuse.
Le centre du cercle circonscrit d'un triangle ABC est le point de concours (l'unique point d'intersection) de ses trois médiatrices. Dans le plan, on peut calculer ses coordonnées en écrivant les équations de deux de ses médiatrices puis en résolvant le système de deux équations à deux inconnues ainsi formé.
longueur de la médiane issue de l'angle droit a pour longueur la moitié de la longueur de l'hypoténuse. ABC est un triangle rectangle en A et I est le milieu de [BC] donc AI = BC 2 .
L'orthocentre d'un triangle acutangle est situé à l'intérieur du triangle tandis que celui d'un triangle obtusangle est situé à l'extérieur. appartient à deux hauteurs, il appartient aussi à la troisième. On considère l'homothétie de centre le centre de gravité du triangle et de rapport –2.
Le point O est le centre du cercle et le cercle passe par le point B. Un rayon est un segment qui rejoint le centre du cercle, O, à un point sur le cercle, B.
Propriété Dans un triangle rectangle, le milieu de l'hypoténuse est le centre du cercle circonscrit à ce triangle. Autres formulations du théorème : Si un triangle est rectangle, alors il peut être inscrit dans un cercle ayant pour diamètre son hypoténuse.
L'angle au centre
Un angle au centre est un angle formé par deux rayons d'un cercle. Le sommet de cet angle se situe au centre du cercle. Les angles orange et mauve dans le cercle ci-dessous sont des angles au centre puisqu'ils sont formés par deux rayons du cercle.
Cette petite équerre à centrer va permettre à l'opérateur de venir tracer des repères pour trouver très précisément le centre d'un cylindre, pour y effectuer un perçage ou une découpe par exemple. Pour cela il faudra bien positionner les ergots de l'équerre sur le champ du cylindre pour réaliser un traçage de qualité.
Méthode avec un compas et une règle
Placer la pointe sèche du compas sur une extrémité du segment et tracer un cercle. Répéter l'étape 2 à partir de l'autre extrémité du segment. À l'aide d'une règle, tracer la droite qui relie les deux intersections des cercles. Cette droite est la médiatrice du segment.
Cercle passant par 3 points
Mais si nous prenons les points B et C, le centre doit être sur la médiatrice de [BC]. Ainsi, le centre O du cercle cherché doit être à l'intersection de la médiatrice de [AB] et celle de [BC], ce qui donne OA = OB = OC et donc O est aussi sur la médiatrice de [AC].
Si un triangle est inscrit dans un cercle et a pour côté un diamètre de ce cercle alors ce triangle est rectangle. Le diamètre est son hypoténuse.
Le cercle circonscrit à un triangle est un cercle passant par les trois sommets du triangle. Son centre est le point d'intersection des trois médiatrices du triangle.
Un de nos théorèmes sur le cercle stipule que si deux cordes sont équidistantes du centre, leurs longueurs sont égales. Cela signifie que les cordes 𝐴𝐵 et 𝐴𝐶, qui sont les deux côtés de notre triangle, sont de longueur égale. Cela signifie que le triangle 𝐴𝐵𝐶 est isocèle.