Donc les matrices symetriques ne sont pas obligatoirement inversibles.
Si A est symétrique réelle et si B est son inverse, on a t(AB) = t(BA) = tI = I, c'est à dire tBtA = tAtB = I, mais comme A est symétrique tA = A, donc tBA = AtB = I : tB estinverse de A. l'unicité de l'inverse mène à tB=B, donc B est symétrique.
Méthode n°2 : Une matrice A est inversible si et seulement si la famille formée par ses vecteurs colonnes est libre. Autrement dit, si vous remarquez une combinaison linéaire entre les vecteurs colonnes de la matrice A, alors cette famille est liée, donc elle n'est pas libre, donc A n'est pas inversible.
En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que ai,j = aj,i pour tous i et j compris entre 1 et n, où les ai,j sont les coefficients de la matrice et n est son ordre.
Toute matrice symétrique réelle est diagonalisable. Les sous-espaces propres d'un endomorphisme symétrique f ∈ L(E)/ d'une matrice symétrique sont 2 `a 2 orthogonaux. Tout endomorphisme symétrique f ∈ L(E) est diagonalisable dans une base orthonormée.
1.1.
En dimension 2, le déterminant est très simple à calculer : det a b c d = ad − bc. C'est donc le produit des éléments sur la diagonale principale (en bleu) moins le produit des éléments sur l'autre diagonale (en orange).
Définition 1.6 (Matrice définie positive) Une matrice symétrique A dont les éléments sont des nombres réels, est définie positive si pour tout vecteur x ∈ Rn non nul on a xT Ax > 0.
Re : Déterminer la matrice d'une symétrie
(x-y)u+(-x+2y) a pour coordonnées (x-y)(2;1)+(-x+2y)(1;1)=(2(x-y)+(-x+2y);(x-y)+(-x+2y))=(2x-2y-x+2y;x-y-x+2y)=(x;y) donc (x-y)u+(-x+2y)v est bien égal à w.
La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes.
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
Une matrice A de Mn(K) M n ( K ) est dite inversible s'il existe B∈Mn(K) B ∈ M n ( K ) tel que AB=BA=In.
1. Une matrice A est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à l'ordre de la matrice. 2. Si une matrice carrée A d'ordre n admet n valeurs propres différentes, alors A est diagonalisable.
Transposer une matrice est une opération simple qui permet, entre autres choses, de mieux comprendre sa structure. Certaines matrices, celles carrées ou symétriques, ont des transposées particulières. La transposition de matrices sert, par exemple, pour les algorithmes ou pour résoudre des systèmes linéaires.
Définition 1 Une matrice m×n est un tableau de nombres à m lignes et n colonnes. Les nombres qui composent la matrice sont appelés les éléments de la matrice (ou aussi les coefficients). Une matrice à m lignes et n colonnes est dite matrice d'ordre (m, n) ou de dimension m × n.
Deux matrices semblables ont les mêmes valeurs propres. Les valeurs propres du produit de deux matrices sont les produits des valeurs propres des deux matrices. Si un vecteur est vecteur propre pour deux matrices, il est vecteur propre de leur produit.
Une matrice triangulaire supérieure dont les éléments diagonaux sont deux à deux distincts est diagonalisable. Ce n'est pas nécessairement le cas si les coefficient diagonaux ne sont pas distincts.
On dit qu'une matrice carrée A est nilpotente s'il existe un entier naturel p tel que la matrice Ap soit nulle. L'indice de nilpotence est alors le plus petit p. et 0 l'endomorphisme nul.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Définition. Un endomorphisme f de E est dit symétrique si : ∀(x, y) ∈ E2, 〈f(x),y〉 = 〈x, f(y)〉.
Matrice singulière
En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible. Par conséquent, un système d'équations représenté par une matrice singulière n'admet pas de solution unique, car on ne peut pas l'inverser. Aussi, le déterminant de la matrice est nul.
Une matrice symétrique A est dite « définie positive » si pour tout vecteur X n 1, le produit X AX 0. Elle est « semi-définie positive » si X AX 0 pour tout X. Une matrice symétrique est dite « définie négative » si pour tout vecteur X n 1), le produit X AX 0.
Comment calculer les mineurs d'une matrice ? Pour une matrice carrée d'ordre 2, trouver les mineurs c'est calculer la matrice des cofacteurs sans les coefficients. Pour les matrices de taille supérieure comme 3x3, calculer les déterminants de chaque sous-matrice.
Le spectre de T, noté σT, est l'ensemble des racines du polynôme caractéristique de T. Ainsi, les éléments du spectre sont exactement les valeurs propres de T, et la multiplicité d'une valeur propre λ dans le spectre est égale à la dimension du sous-espace caractéristique de T associé à λ .