Définition : Un nombre premier est un nombre entier qui n'a que deux diviseurs : 1 et lui- même. Liste de quelques nombres premiers: 2-3-5-7-11-13-17-19-23-29-31-37-41-43-47-53-59-61 Exemples de nombres qui ne sont pas premiers: 8 n'est pas premier car il est divisible par 1, 2, 4 et 8.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers. Il en existe une infinité.
Concernant 32, la réponse est : Non, 32 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 32) est la suivante : 1, 2, 4, 8, 16, 32. Pour que 32 soit un nombre premier, il aurait fallu que 32 ne soit divisible que par lui-même et par 1.
31 : en effet, 31 est bien un multiple de lui-même, puisque 31 est divisible par 31 (on a 31 / 31 = 1, donc le reste de cette division est bien nul) 62 : en effet, 62 = 31 × 2.
Un diviseur propre est un diviseur autre que le nombre lui-même. Le premier nombre parfait est 6. En effet 1, 2 et 3 sont les diviseurs propres de 6 et 1+2+3=6. 28 est également un nombre parfait : 1+2+4+7+14=28.
Il a été sans doute découvert par des mathématiciens grecs de la haute Antiquité. Euclide (vers 300 av. J. -C.)
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 72) est la suivante : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. Pour que 72 soit un nombre premier, il aurait fallu que 72 ne soit divisible que par lui-même et par 1.
Les nombres de Mersenne
Mais pour n = 11, le nombre obtenu 2047 n'est pas un nombre premier car il est divisible par 23. En revanche pour n= 13, 17, 19, le nombre est à nouveau un nombre premier.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Concernant 45, la réponse est : Non, 45 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 45) est la suivante : 1, 3, 5, 9, 15, 45. Pour que 45 soit un nombre premier, il aurait fallu que 45 ne soit divisible que par lui-même et par 1.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Concernant 39, la réponse est : Non, 39 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 39) est la suivante : 1, 3, 13, 39. Pour que 39 soit un nombre premier, il aurait fallu que 39 ne soit divisible que par lui-même et par 1.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Certains nombres de pions peuvent se mettre en forme carrée : 1=1×1, 4=2×2, 9=3×3, 16=4×4, 25=5×5 , 36=6×6, puis 49, 64, 81, 100, 121, etc. On les appelle des carrés parfaits ou simplement des carrés.
Le symbole de l'infini, en mathématiques et au-delà des mathématiques, est « ∞ », inventé par le mathématicien John Wallis au XVII e siècle, signe dont l'origine est controversée et dont la forme peut évoquer un « 8 » horizontal (mais ce n'est pas en référence au chiffre 8 que ce signe fut choisi) ; cette forme a été ...
Le nombre d'or. Où le rencontre -t-on ? On le désigne par la lettre grecque ( phi ) en hommage au sculpteur grec Phidias (né vers 490 et mort vers 430 avant J.C) qui décora le Parthénon à Athènes. C'est Théodore Cook qui introduisit cette notation en 1914.
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, … Le terme fut introduit en 1956 dans un article par Gardiner, Lazarus, Metropolis et Ulam. Ils les nommèrent « chanceux » à cause de leur lien avec l'histoire du problème de Josèphe, contée par le chroniqueur Flavius Josèphe.
Concernant 81, la réponse est : Non, 81 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 81) est la suivante : 1, 3, 9, 27, 81. Pour que 81 soit un nombre premier, il aurait fallu que 81 ne soit divisible que par lui-même et par 1.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale.
1 665 est un nombre impair, puisqu'il n'est pas divisible par 2.
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51. Pour que 51 soit un nombre premier, il aurait fallu que 51 ne soit divisible que par lui-même et par 1.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100. Pour que 100 soit un nombre premier, il aurait fallu que 100 ne soit divisible que par lui-même et par 1.
Par conséquent : 42 est multiple de 1. 42 est multiple de 2.