Pourquoi faire un test statistique ?

Interrogée par: Patricia Huet-Delaunay  |  Dernière mise à jour: 23. November 2024
Notation: 4.9 sur 5 (45 évaluations)

Un test statistique permet d'évaluer à quel point les données vont à l'encontre d'une certaine hypothèse, l'hypothèse nulle aussi appelée H0. Sous H0, les données sont générées par le hasard. En d'autres termes, les processus contrôlés (manipulations expérimentales par exemple) n'ont pas d'influence sur les données.

Quel est l'objectif d'un test statistique ?

1.1 Objectif

Réaliser un test statistique consiste à mettre en œuvre une procédure permettant : de confronter une hypothèse avec la réalité, ou plus exactement, avec ce que l'on perçoit de la réalité à travers les observations à disposition ; de prendre une décision à la suite de cette confrontation.

Pourquoi faire des analyses statistiques ?

Tout d'abord, pourquoi faire des tests statistiques ? Les tests statistiques (ou tests d'hypothèses) vont vous permettre de tirer des conclusions claires, mathématiquement rigoureuses (et élégantes !) à partir des données que vous aurez analysées.

Comment décider de choisir un test statistique ?

Comment choisir un test statistique ?
  1. Selon le type de variable à analyser – échelle quantitative ou qualitative. La nature du critère principal est très importante pour le type de test à appliquer. ...
  2. Normalité des données et égalité des variances. ...
  3. Taille des échantillons.

Quelles sont les 5 étapes du test statistique ?

D'un point de vue pratique, les principales étapes sont :
  • Construire les hypothèses H0 et H1.
  • Déterminer les risques d'erreur alpha, beta.
  • Déterminer la situation du test : unilatéral ou bilatéral.
  • Choisir le test adapté : chaque test a ses conditions d'application.
  • Calculer le « p » grâce au test et l'interpréter.

Statistiques en pratique (3): Les tests statistiques et leurs utilisations

Trouvé 40 questions connexes

Quels sont les grands principes d'un test statistique ?

Les tests statistiques permettent de contrôler la validité d'une hypothèse émise sur une population-mère, à partir des observations effectuées sur un échantillon. L'hypothèse ainsi énoncée est appelée hypothèse nulle ou H0.

Comment interpréter un test statistique ?

Comment interpréter les sorties d'un test statistique : le niveau de significativité alpha et la p-value. Lors de la mise en place d'une étude, il faut spécifier un seuil de risque au-dessus duquel H0 ne doit pas être rejetée. Ce seuil est appelé niveau de significativité alpha et doit être compris entre 0 et 1.

Quand utiliser une ANOVA et un test t ?

Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.

Quels sont les étapes de la réalisation d'un test statistique ?

La formulation des hypothèses, le choix du test statistique et l'analyse des résultats sont les étapes les plus importantes.

Quand utiliser le test d'ANOVA ?

L'analyse de la variance (ANOVA) est très utilisée en statistique et dans le domaine des études marketing. Cette méthode analytique puissante sert à mettre en avant des différences ou des dépendances entre plusieurs groupes statistiques.

Quel est le but et l'objectif de la statistique ?

3.1 Généralités. La statistique a pour objet de recueillir des observations portant sur des sujets présentant une certaine propriété et de traduire ces observations par des nombres qui permettent d'avoir des renseignements sur cette propriété.

Quel est l'objet d'étude de la statistique ?

La science des statistiques est utile pour choisir objectivement un échantillon, faire des généralisations valables à partir des observations faites sur l'ensemble d'échantillons, mais aussi pour mesurer le degré d'incertitude, ou la fiabilité, des conclusions tirées.

Comment conclure un test statistique ?

Comment conclure sur un test statistique
  1. Supérieur au seuil : On rejette H0 et on conclut que l'hypothèse H1 est probable.
  2. Inférieur au seuil : On ne rejette pas H0, cela signifie qu'on ne dispose pas d'assez d'information pour montrer que H1 est vraie (on n'accepte pas H0 pour autant).

Quand utiliser un test paramétrique ?

Par exemple, si vous voulez comparer une moyenne observée à une valeur théorique : Vous souhaitez comparer la moyenne des notes en mathématiques d'une classe à la moyenne du pays ? Dans ce cas nous allons utiliser un test paramétrique car nous pouvons supposer que les données suivent une distribution normale.

Quel test statistique pour deux variables qualitatives ?

Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives. Le croisement de deux questions qualitatives produit un tableau que l'on désigne généralement par « tableau de contingence ».

Comment calculer la valeur d'un test statistique ?

La p-value, correspondant à la valeur absolue des statistiques du test t (|t|), est calculée pour les degrés de liberté (df): df = n - 1 .

Pourquoi on fait ANOVA ?

L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.

Quel est l'objectif de la statistique F dans un test ANOVA ?

Le test F est utilisé dans le processus d'ANOVA pour tester la différence entre les moyennes ou l'égalité de la variance. L'ANOVA sépare la variabilité intra-échantillon de la variabilité inter-échantillons. Le test F est le rapport de l'erreur quadratique moyenne de ces deux échantillons.

Pourquoi faire un test de Student ?

Le test de Student fait intervenir une statistique de test suivant une loi de Student : un type de loi de probabilité faisant intervenir la loi normale centrée réduite. Le test de Student permet de déterminer la probabilité que deux groupes de données soient différents.

Quand Dit-on qu'un test est valide ?

La validité est utilisée pour examiner la précision avec laquelle un élément est mesuré par une méthode. Si une méthode particulière mesure effectivement tout ce qu'elle prétend et que les résultats générés correspondent étroitement aux valeurs du monde réel, la méthode est considérée comme valide.

Comment s'appelle le test permettant de vérifier son hypothèse ?

Un test d'hypothèse (ou test statistique) est une démarche qui a pour but de fournir une règle de décision permettant, sur la base de résultats d'échantillon, de faire un choix entre deux hypothèses statistiques.

Comment choisir H0 et H1 ?

Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.

Quand utiliser les tests non paramétriques ?

Les tests non paramétriques sont donc utilisés lorsque le niveau d'échelle n'est pas métrique, que la distribution réelle des variables aléatoires n'est pas connue ou que l'échantillon est simplement trop petit pour supposer une distribution normale.

Comment savoir si un test est paramétrique ou non paramétrique ?

Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.

Comment présenter les résultats d'une analyse statistique ?

Contentez vous de les décrire. Les raisons pour lesquelles des résultats particuliers sont observés (ou non) sont l'objet de la partie discussion. – Lorsque vous mentionnez vos variables dans le texte, ou qu'elles sont écrites dans vos tableaux ou figures, utilisez des termes français transparents et non pas des codes.

Article précédent
Pourquoi la bière rend heureux ?