On dit que : • f est un endomorphisme si E = F ; f est un isomorphisme si elle est linéaire bijective ; • f est un automorphisme si c'est un endomorphisme bijectif.
f est un automorphisme de groupes si f est un isomorphisme et si G=G′ (même groupe au départ et à l'arrivée). Le noyau de f , noté kerf , est l'ensemble des x de G tels que f(x)=1G′ f ( x ) = 1 G ′ .
Une application linéaire de E dans F est une application f:E → F telle que pour tous vecteurs u, v ∈ E et tout scalaire λ ∈ K, • f(u + v) = f(u) + f(v), • f(λu) = λf(u). Si F = K on dit que f est une forme linéaire. Si F = E, f est appelée un endomorphisme.
Une condition nécessaire et suffisante pour qu'une application linéaire de dans soit un automorphisme est que la matrice associée à dans une base quelconque de soit inversible. De plus, si est un automorphisme de et si A = [ f ] B E , la matrice de dans la base est égale à , inverse de la matrice .
Définition. On dit qu'une application linéaire f : Rn → Rm est injective si deux vecteurs différents ont des images différents surjective Si Im(f ) atteint tout l'espace d'arrivée Rm. bijective (ou bien un automorphisme) si n = m et que f est inversible.
Bijectivité
On dit qu'une fonction f est bijective si elle est injective et surjective. Exemples : f:R→R:x↦3x est bijective. f:Z→Z:z↦3z n'est pas bijective car elle n'est pas surjective.
Théorème de la bijection entre segments — Si f est une fonction continue et strictement monotone sur un intervalle [a, b] et à valeurs réelles, alors elle constitue une bijection entre [a, b] et l'intervalle fermé dont les bornes sont f(a) et f(b).
application. On dit que u est linéaire ou que c'est un morphisme si et seulement si : ∀x, y ∈ E, ∀λ, µ ∈ R, u(λx + µy) = λu(x) + µu(y). Lorsque E = F, un morphisme de E dans lui même s'appelle un endomorphisme.
Un endomorphisme est bijectif lorsqu'il est à la fois injectif et surjectif. Cette définition de la bijectivité comme la conjonction de l'injectivité et de la surjectivité n'est pas spécifique aux endomorphismes. Il s'agit d'une définition générale s'appliquant à des fonctions quelconques .
Si f est une application linéaire d'un espace de dimension finie E dans un espace de dimension finie F avec dim(E)=dim(F) pour que f soit un isomorphisme, il suffit que f soit injective OU que f soit surjective.
En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, par exemple, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc.
Exercice 2 Soit f ∈ L(E) telle que f3 = f2 + f, montrer que E = kerf ⊕ Imf. −→ y = f (−→x) ∈ Imf ∩kerf, il s'agit de prouver que −→ y = −→ 0 . Ainsi −→ y = −→ 0 . est bien la somme d'un élément de kerf et d'un élément de Imf.
Pour montrer qu'une application f : E → F est linéaire, on peut utiliser la définition, ∀u, v ∈ E,∀λ ∈ K : f(u + v) = f(u) + f(v), f(λu) = λf(u) ou une variante équivalente : f(u + λv) = f(u) + λf(v), ou encore comparer au crit`ere de s.e.v. — différences ? f(λu + µv) = λf(u) + µf(v).
Définition 2.7 Si un morphisme de groupes f : G → G est bijectif, on dit que c'est un isomor- phisme. Si de plus G = G, on dit que f est un automorphisme de G.
Définition Si f : E → F est une application linéaire, son noyau, noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ∈ E|f (v)=0}. Le noyau de la projection p := (x,y,z) ↦→ (x,y,0) de R3 sur son plan horizontal est l'axe vertical défini par x = y = 0.
Caractérisation des applications linéaires injectives et surjectives. Soit une application linéaire du vectoriel dans le vectoriel , l'application est surjective si et seulement si son image est égale à l'espace . l'application est injective si et seulement si son noyau ne contient que le vecteur nul.
En mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels sur un corps qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires.
L'application nulle est l'application ƒ de X dans E définie par ƒ(x) = 0 pour tout élément x de X.
En breton moderne, le substantif kêr a plusieurs significations : « ville, village, villa » (anciennement « habitat fortifié », et « cité »), parfois « (le) chez soi, intérieur (ou home). » Par contre, la maison en tant que bâtisse se dit ti en breton.
Deux groupes sont dit isomorphes lorsqu'il existe un morphisme de groupes entre les deux qui est bijectif.
un hyperplan H de E est un sous-espace vectoriel maximal (pour la relation d'inclusion)! Si F est un autre sous-espace vectoriel de E avec H⊂F H ⊂ F , alors ou bien F=H , ou bien F=E .
Definition Une fonction f : E → F est injective si tout élément y de F a au plus un antécédent (et éventuellement aucun). Definition Une fonction f : E → F est surjective si tout élément y de F a au moins un antécédent. Autrement dit : f est surjective si et seulement si f (E) = F.
Une matrice est injective si son noyau est réduit à 0. Une matrice est surjective si son rang est égal à la dimension de l'espace d'arrivée.
En mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est image d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l'ensemble image est égal à l'ensemble d'arrivée.