La loi des
Considérons un triangle ? ? ? rectangle en ? . Dans le triangle initial, le côté ? est l'hypoténuse et le côté opposé à l'angle ? est le côté ? . Ainsi, le sinus de l'angle ? est égal à la longueur du côté opposé divisé par la longueur de l'hypoténuse.
Important! Généralement, on utilise la loi des cosinus dans deux situations : lorsqu'on connait les mesures de deux côtés et de l'angle qu'ils forment dans le triangle ce qui permet de trouver la mesure du troisième côté (comme dans le triangle de gauche ci-dessous);
Utiliser la trigonométrie pour trouver les longueurs des côtés d'un triangle rectangle. On peut utiliser les lignes trigonométriques pour calculer la longueur de l'un des côtés d'un triangle rectangle.
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Pour utiliser les formules de trigonométrie, il faut se situer dans un triangle rectangle. Ces trois rapports ne dépendent que de la mesure de l'angle considéré. Le cosinus et le sinus d'un angle aigu sont toujours compris entre 0 et 1.
Vu en classe de 3ème: Dans un cercle, deux angles inscrits interceptant le même arc sont de même mesure. Vu en classe de 3ème: Dans un triangle rectangle, par définition, le sinus d'un angle aigu est égale au quotient du côté opposé à l'angle par l'hypoténuse.
Le théorème d'Al-Kashi, ou théorème de Pythagore généralisé, ou encore loi des cosinus est un théorème mathématique qui est utilisé en géométrie pour connaître la longueur d'un côté, ou un angle, d'un triangle quelconque, à partir de la longueur des autres côtés et de la mesure de l'angle opposé.
On appelle formule d'Al-Kashi, ou loi des cosinus, ou encore théorème de Pythagore généralisé l'égalité suivante, valable dans tout triangle ABC A B C , qui relie la longueur des côtés en utilisant le cosinus d'un des angles du triangle : a2=b2+c2−2b⋅ccos(ˆA).
La fonction cosinus est utilisée couramment pour modéliser des phénomènes périodiques comme les ondes sonores ou lumineuses ou encore les variations de température au cours de l'année.
Une phrase permet de se rappeler des trois premiers théorèmes à la fois : cah soh toa pour « casse-toi » : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent. Certaines personnes préfèrent soh cah toa.
Origine du mot
Le mot sinus est un mot latin désignant, entre autres, une cavité ou une poche. C'est par une erreur de traduction qu'il a été attribué à la longueur d'un des côtés du triangle rectangle.
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
Les sinus sont des cavités présentes dans les os du visage et du crâne. Tapissées d'une muqueuse, comme les fosses nasales, ces cavités sont au nombre de quatre paires situées symétriquement de part et d'autre du visage.
Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du XI e siècle et, pour la forme plane, par Nasir al-Din al-Tusi au début du XIII e siècle.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Pour calculer l'aire d'un triangle quelconque, on multiplie la base par la hauteur puis on divise par 2.
L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
La valeur exacte de sin(45) est √22 . Le résultat peut être affiché en différentes formes.
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.