En effet, 0²=0 et c'est le seul nombre qui a pour carré 0. La dernière équation n'admet aucune solution. Il n'existe aucun carré négatif.
Nous avons vu plus haut qu'un carré ne peut pas être négatif. Les élèves de 3ème savent bien que la racine carrée de -1 n'existe pas.
Certains nombres de pions peuvent se mettre en forme carrée : 1=1×1, 4=2×2, 9=3×3, 16=4×4, 25=5×5 , 36=6×6, puis 49, 64, 81, 100, 121, etc. On les appelle des carrés parfaits ou simplement des carrés.
Quelle est la racine carrée de 0,01 ? 7.
Le carré est défini pour tout nombre n comme le résultat de la multiplication de ce nombre par lui-même, et on le note avec un chiffre 2 en exposant : n2 = n × n.
Par exemple dans l'anneau ℤ/9ℤ, les racines carrées de 0 sont 0, 3 et -3, et dans le corps gauche des quaternions, tout réel strictement négatif possède une infinité de racines carrées. Dans le cas des nombres réels, un auteur parlant d'une racine carrée de 2, traite d'un des deux éléments √2 ou bien -√2.
L'opposé de 100 est -100. L'inverse de 100 est 0.01.
√π=7 .
Et 3,14, c'est aussi le fameux symbole "Pi". C'est donc tout naturellement que cette date est devenue au fil du temps la journée internationale de ce nombre mythique : une suite de décimales qui, comme nous l'avons tous appris à l'école, définit le rapport entre la circonférence d'un cercle et son diamètre.
Par convention, le premier nombre carré est égal à 1, bien que 0 soit un carré parfait (0×0=0).
Les carrés parfaits de 1 à 144 classés par ordre croissant: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121 et 144.
Le cube de 5 est 125, soit : 5³ = 5 × 5 × 5 = 125.
√2 vaut approximativement 1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737. Pour plus de décimales, voir la suite A002193 de l'OEIS. Le calcul d'une valeur approchée de √2 a été un problème mathématique pendant des siècles.
Par exemple, la racine carrée de 9 est 3 parce que 3 × 3 = 9. On note formellement : √9 = 3.
Il a été sans doute découvert par des mathématiciens grecs de la haute Antiquité. Euclide (vers 300 av. J. -C.)
Le nombre Pi est la plus célèbre constante mathématique. Il s'agit d'une « constante », car il correspond au rapport constant entre la circonférence d'un cercle et son diamètre. La plupart des gens connaissent sa base — 3,14 — mais ensuite cela se corse : et pour cause, c'est un nombre infini.
L'ubiquité est « le fait d'être présent partout à la fois ou en plusieurs lieux en même temps. » De tous les nombres, π est celui qui jouit le plus spectaculairement de cette propriété : on le rencontre sans cesse en mathématiques et en physique.
Le produit d'un nombre et de son inverse est toujours égal à 1.5 × 0,2 = 1. On peut en déduire que l'inverse de 5 est 0,2 et que l'inverse de 0,2 est 5.
Pour calculer le double d'un nombre, il suffit de le multiplier par 2. Exemple : 12 × 2 = 24. 24 est le double de 12. On utilise également l'expression "deux fois plus" pour demander le double de quelque chose.
Par exemple, dans l'anneau ℤ/10ℤ, l'inverse de 3 est 7 (car 3 × 7 = 21 est congru à 1 modulo 10), mais 2 n'a pas d'inverse.
cos(π), on est bien de l'autre coté, π c'est cet angle ici, donc le cosinus vaut -1. sinus de π, sin(π) ça vaut 0, donc ça fait bien -1 ! Et donc on a montré que i^2 est égal à -1.
La racine carrée de trois, notée √3 ou 31/2, est en mathématiques le nombre réel positif dont le carré est 3 exactement. Il vaut approximativement 1,732.