Le premier trou noir fut détecté en 1971 dans la constellation du Cygne. En 1974, Bruce Balick et Robert L. Brown détectent un astre extrêmement massif au centre de la Voie Lactée qu'ils baptisent Sagittarius A*. Il a fallu attendre la fin des années 1990 pour que sa nature de trou noir supermassif soit prouvée.
Toutefois, jusqu'à il y a peu, ils n'avaient jamais repéré de petits trous noirs, un véritable mystère astrophysique depuis de nombreuses années. Mais voilà, les astronomes ont découvert un trou noir dont la masse n'équivaut qu'à trois fois celle du Soleil, ce qui en fait le plus petit connu à ce jour.
1783 : dans le cadre de la théorie corpusculaire de la lumière, John Michell énonce la première notion de trou noir newtonien (appelées « Étoiles foncées ») (en se servant des lois de Newton de la gravitation).
Quel est le trou noir le plus puissant ? Le trou noir le plus monstrueux que l'on connaisse est TON 618, un colosse de 40 milliards de masses solaires. Son ombre est si gigantesque qu'un faisceau de lumière mettrait des semaines à la traverser.
Ce trou noir supermassif a une masse équivalente à plus de 30 milliards de fois celle du soleil, selon une étude parue dans une revue scientifique britannique.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
Grâce au télescope Hubble, un trou noir vient d'être découvert à quelques encablures de notre planète après douze années de recherche. Situé à seulement 6.000 années-lumière de la Terre, il a été repéré au cœur de Messier 4, un amas globulaire dans la constellation du Scorpion.
De fait, un trou noir comporte plusieurs couches. On trouve d'abord l'horizon des événements, connu sous le nom de point de non-retour, puis le disque d'accrétion. Il s'agit d'un énorme disque de poussière et de gaz tourbillonnant autour du trou noir.
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Au fil des ans, les scientifiques ont étudié la possibilité que les trous noirs puissent être des trous de ver menant vers d'autres galaxies. Ils pourraient même être, comme certains l'ont suggéré, un chemin vers un autre univers.
Il s'appelle Chuck Clark et il est l'un des meilleurs cosmonautes de la Nasa, l'organisme responsable de la recherche spatiale aux Etats-Unis. Dans 5 ans, cet Américain de 32 ans va vivre une aventure incroyable et très risquée : il s'est porté volontaire pour être le 1er homme à entrer à l'intérieur d'un trou noir !
Un trou blanc, que l'on appelle aussi fontaine blanche, serait, en quelque sorte, le contraire d'un trou noir : si un trou noir est un endroit de l'espace où la matière est attirée, et disparaît, un trou blanc, serait, au contraire, un endroit où la matière « apparaîtrait », et d'où elle jaillirait, un peu à la manière ...
Un son rappelant le vent qui souffle
L'astrophysicien spécialiste des trous noirs Frédéric Marin a décrit ce son comme étant « profond, lourd, comme le bruit du vent au fond d'un abîme ».
Mauvaise nouvelle pour la Terre
Les forces gravitationnelles responsables de la spaghettification entreraient en action : la surface du globe la plus proche du trou noir serait soumise à une force bien supérieure à celle qui s'exercerait de l'autre côté, entraînant l'arrêt de mort de la planète.
Cela peut sembler effrayant, mais ce n'est pas le cas. Vous n'avez pas à craindre les trous noirs. Plus de 100 millions de trous noirs errent probablement dans notre galaxie à eux seuls, et ce sont des objets fascinants dans le cosmos.
Température. Plus un trou noir est massif, plus il est froid. Les trous noirs stellaires sont très froids : leur température s'approche du zéro absolu (0 kelvin ou −273,15 degrés Celsius).
Un trou blanc (ou fontaine blanche) est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
Une horloge avancerait à un rythme plus lent. En quelque sorte, donc, les trous noirs ralentissent le temps. Cet effet est tellement important que, si notre observateur lance un objet dans la direction du trou noir, il ne le verra jamais pénétrer à l'intérieur du trou noir.
Le principe d'un trou noir est que sa force gravitationnelle est tellement forte que rien ne peut en ressortir, même pas les rayonnements électromagnétiques (lumière visible, rayons X, gamma, etc.) qui se déplacent dans le vide à la vitesse de la lumière.
À l'intérieur des trous noirs et autour d'eux, le champ gravitationnel est tellement puissant que rien ne parvient à s'échapper, ni même la lumière. Cela signifie que les trous noirs n'émettent aucune onde lumineuse et n'ont donc aucune couleur.
En mai 2022, une collaboration internationale d'astronomes avait prouvé la présence de ce trou noir supermassif au coeur de notre galaxie, baptisé Sagittarius A* (Sgr A*).
La relativité générale estime que rien ne peut sortir d'un trou noir, pas même l'information concernant la matière aspirée. Cette opposition de lois physiques concernant les trous noirs, mise évidence par Hawking, porte le nom de "paradoxe de l'information".