(a+b)3 = a3 + 3a2b + 3ab2 + b3 Le volume du grand cube, de coté a+b, est la somme des volumes des huit parallélépipèdes colorés, dont un est caché.
L'identité a^3 - b^3 = (a - b)(a² + ab + b²).
L'égalité (a+b)² = a² + 2ab + b² est la première que l'on retrouve dans le livre II des Éléments d'Euclide.
( a + b ) ( a − b ) = a 2 − b 2 . On utilise souvent aussi celles de degré 3 : (a+b)3=a3+3a2b+3ab2+b3, ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 , (a−b)3=a3−3a2b+3ab2−b3, ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 , a3−b3=(a−b)(a2+ab+b2).
(a+b)3 = a3 + 3a2b + 3ab2 + b3
Le volume du grand cube, de coté a+b, est la somme des volumes des huit parallélépipèdes colorés, dont un est caché.
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Elles servent en général à accélérer les calculs, à simplifier certaines écritures, à factoriser ou à développer des expressions. Elles servent pour la résolution des équations du second degré et sont plus généralement utiles pour la recherche de solutions d'équations.
Développer signifie « passer d'un produit (une multiplication) à une somme (une addition) ». Avec les identités remarquables, cela signifie, par exemple, passer de : (a + b)² → a² + 2ab + b² ou encore de. (a + b) (a – b) → a² – b²
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
3. (a + b)3 Un coupe de pouce : (a + b)3 = (a + b)2(a + b) on développe dans une parenth`ese (a + b)2 et on termine le développement général.
La formule pour calculer l'aire d'un carré est c × c, « côté fois côté ». Ex. : un carré de 5 cm de côté a pour aire 5 × 5 = 25 cm2. La formule pour calculer l'aire d'un rectangle est L × l, « longueur fois largeur ». Ex. : un rectangle de longueur 8 m et de largeur 5 m a pour aire 8 × 5 = 40 m2.
Pour calculer le volume d'un pavé droit, on applique la formule suivante : V = L × l × h (avec L la longueur, l la largeur et h la hauteur du pavé droit). Pour calculer le volume d'un cube, on applique la formule suivante : V = a3 (avec a l'arête du cube).
Un cube parfait est un entier est égal au produit du même entier trois fois. Par exemple, huit est un cube parfait, puisque huit est égal à deux multiplié par deux multiplié par deux. On peut aussi dire qu'un entier 𝑛 est un cube parfait s'il existe un entier 𝑎 tel que 𝑎 au cube est égal à 𝑛.
puis on utilise l'identité (a - b)² = a² - 2ab + b².
On utilise la factorisation avec les identités remarquables lorsque l'on ne peut repérer aucun facteur commun dans l'expression littérale. Les identités remarquables sont utilisées pour le développement mathématique d'expressions numériques. Mais on les utilise également à l'envers pour factoriser.
Factoriser un trinôme s'il est le développement d'un carré
Pour développer le carré d'une somme ou le carré d'une différence, on utilise les identités : ( a + b ) 2 = a 2 + 2 a b + b 2 ( a − b ) 2 = a 2 − 2 a b + b 2
Développer une expression consiste à l'écrire sous la forme d'une somme ou d'une soustraction. Cela revient à transformer une multiplication (ou un produit) de plusieurs termes semblables en une opération de sorte que l'on obtienne des formules de type : k x (a + b) = k x a + k x b.
L'identité a^3 + b^3 = (a + b)(a² - ab + b²).
Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit. La formule ci-dessus permet de factoriser une différence de deux carrés. Par exemple, x²-25 = x²-5² = (x + 5)(x - 5).
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Une expression factorisée est l'écriture d'un produit. L'expression factorisée est 2 × (L + l). 2 × (a + b − 2) = 2 × a + 2 × b − 2 × 2 = 2a + 2b - 4. 5 + 15a + 5 = 5 × 9 + 5 × 3a + 5 × 1 = 5 × (9 + 3a + 1).
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Simplifier une fraction, c'est l'écrire avec un numérateur et un dénominateur plus petits. En pratique, cela revient à diviser le numérateur et le dénominateur par un même nombre.