Théorème : Si deux angles sont complémentaires , le sinus et la tangente de l'un sont égaux respectivement au cosinus et à la cotangente de l'autre . Cette relation importante permet le calcul du sinus d'un angle connaissant son cosinus et inversement de trouver le cosinus si l'on donne le sinus .
Les points trigonométriques
Pour trouver les coordonnées d'autres points sur le cercle trigonométrique, il suffit de connaitre la mesure de l'angle au centre et d'appliquer la relation de Pythagore dans un triangle rectangle ayant une hypoténuse de 1 unité.
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
En Orient, l'indien Aryabhata l'Ancien (476 ; 550) utilise la demi corde et donne les premières tables de sinus. On retrouve la configuration du sinus dans le triangle rectangle telle qu'elle est enseignée aux collégiens aujourd'hui. Aryabhata est le premier à voir la trigonométrie hors du cercle.
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
Le sinus et la tangente d'un angle aigu seront introduits comme rapports de longueurs ou à l'aide du quart de cercle trigonométrique. On établira les formules : cos²x + sin²x = 1 ; tan x = sin x cos x On n'utilisera pas d'autre unité que le degré décimal. I.
La première colonne, à partir de la deuxième ligne, accueillera les fonctions trigonométriques (sinus, cosinus, tangente, cosécante, sécante et cotangente). Sur la première ligne, à partir de la deuxième colonne, vous indiquerez les angles principaux (0°, 30°, 45°, 60°, 90°).
Une phrase permet de se rappeler des trois premiers théorèmes à la fois : cah soh toa pour « casse-toi » : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent. Certaines personnes préfèrent soh cah toa.
Formule du cosinus
Dans un triangle rectangle, le cosinus d'un angle est le nombre égal à la longueur du côté adjacent divisée par la longueur de l'hypoténuse. Ci-contre, le cosinus de 48° (cos(48) sur la calculatrice) est le nombre qui est égal à la longueur AC divisée par la longueur BC.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
La valeur exacte de sin(45) est √22 .
La valeur exacte de sin(60°) sin ( 60 ° ) est √32 .
En d'autres mots, tanθ=ΔyΔx=sinθcosθ où θ= mesure de l'angle au centre du cercle trigonométrique.
Pour utiliser les formules de trigonométrie, il faut se situer dans un triangle rectangle. Ces trois rapports ne dépendent que de la mesure de l'angle considéré. Le cosinus et le sinus d'un angle aigu sont toujours compris entre 0 et 1.
2kπ correspond à 360°, c'est-à-dire un tour complet. Un angle de 90°+un tour complet, ça reste "comme" un angle de 90°. Le cosinus est donc le même.
À chaque angle, on associe 4 grandeurs appelées nombres trigonométriques : le sinus, le cosinus, la tangente et la cotangente. Les définitions suivantes constituent une extension du sinus, cosinus et de la tangente d'un angle aigu d'un triangle rectangle.
Jacques OZANAM (1640 - 1718) dans son traité de trigo de 1697 parle encore de sinus de complément et dresse la table des sinus et tangente seulement. Le mot COSINUS est né dans le texte en France entre OZANAM-1697 et BELIDOR-1725.
Le côté opposé à un angle est celui qui est en face de cet angle. Celui des deux côtés d'un angle aigu qui est le côté adjacent est celui qui n'est pas l'hypoténuse.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
Dans un triangle rectangle, la tangente d'un angle, notée tanθ est le rapport de la mesure du côté opposé à l'angle θ et du côté adjacent à ce même angle.