Un test non paramétrique est un test d'hypothèse qui n'exige pas que la distribution de la population soit caractérisée par certains paramètres. Par exemple, de nombreux tests d'hypothèse supposent que la population obéit à une loi normale pour les paramètres µ et σ.
Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Le Test de Wilcoxon est un test de comparaison de deux séries d'une même variable quantitative (même unité de mesure). C'est un Test non paramétrique, utilisé quand les conditions de normalité de la variable ne sont pas valides. C'est l'équivalent du test T de Student.
Le test U de Mann-Whitney est donc le pendant non paramétrique du test t pour échantillons indépendants ; il est soumis à des hypothèses moins strictes que le test t. Par conséquent, le test U de Mann-Whitney est toujours utilisé lorsque la condition de distribution normale du test t n'est pas remplie.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Duncan en 1955. Ce test post-hoc ou test de comparaisons multiples peut être utilisé pour déterminer les différences significatives entre les moyennes des groupes dans une analyse de variance.
Pour calculer un test de Kruskal-Wallis, il suffit de disposer de plusieurs échantillons aléatoires indépendants présentant au moins des caractéristiques à échelle ordinale. Les variables ne doivent pas nécessairement satisfaire à une courbe de distribution.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Le test de Dunn est un test statistique utilisé pour effectuer un nombre spécifique de comparaisons entre des groupes de données et déterminer laquelle d'entre elles est significative.
Un des tests permettant de vérifier la normalité de la variable x est le test de Shapiro-Wilk. Il est appliquable pour des échantillons allant jusqu'à 50 valeurs. Il utilise le rapport de deux estimations de la variance.
Le test de Bartlett peut être utilisé pour comparer deux variances ou plus. Ce test est sensible à la normalité des données. Autrement dit, si l'hypothèse de normalité des données semble fragile, on utilisera plutôt le test de Levene ou de Fisher.
Si la valeur p du test de Levene est supérieure à 0,05, alors les variances ne sont pas significativement différentes les unes des autres (c'est-à-dire que l'hypothèse d'homogénéité de la variance est satisfaite).
Les tests non paramétriques sont donc utilisés lorsque le niveau d'échelle n'est pas métrique, que la distribution réelle des variables aléatoires n'est pas connue ou que l'échantillon est simplement trop petit pour supposer une distribution normale.
Tests non paramétriques
Pour statuer sur la significativité de l'écart de la médiane à la médiane théorique, il suffit donc de vérifier si la fréquence de 11 fois sur 14 est significativement différente de 50%. On observe que cet écart est limite.
Les tests paramétriques sont des tests dont l'échantillon que nous étudions suit une certaine loi (loi normale par exemple) ou vérifie un certain nombre d'hypothèses (même variance entre les deux échantillons donnés). Ils sont plus puissants mais nécessitent un certain nombre d'hypothèses à vérifier.
Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche).
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Pour calculer le test de Wilcoxon pour deux échantillons dépendants, on calcule d'abord la différence entre les valeurs dépendantes. Une fois les différences calculées, les valeurs absolues des différences sont utilisées pour former les classements.
Interpréter les résultats: après avoir effectué le test de Wilcoxon, il est important d'interpréter les résultats.La valeur p indique la probabilité d'observer une différence aussi extrême que celle observée, en supposant que l'hypothèse nulle est vraie.Si la valeur p est inférieure au niveau de signification ( ...
C'est un modèle statistique qui sert à démontrer l'existence de similitudes ou différences sur des aspects précis dans une population étudiée. Dans l'ANOVA, on étudie une variable quantitative à laquelle on attribue une ou deux variables qualitatives : les variables catégorielles.
Il se calcule comme suit : W = X2/N(K-1) ; où W est la valeur W de Kendall ; X2 est la valeur statistique du test de Friedman ; N est la taille de l'échantillon.
L'analyse post-hoc est une méthode d'exploration et d'interprétation des résultats d'un test statistique après qu'il a été effectué. Il peut vous aider à découvrir des modèles cachés, à comparer des groupes ou à effectuer des ajustements pour plusieurs comparaisons.