Définitions. On apelle vecteur un segment de droite orienté noté . A est l'origine du vecteur et B son extrémité. On distingue trois types de vecteurs: vecteurs libres, glissants et liés.
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
possède trois éléments caractéristiques : sa direction (droite (AB)) ; son sens (il y a deux sens possibles de parcours de la droite (AB) : de A vers B ou de B vers A) ; sa norme (ou sa longueur, la longueur du segment [AB]).
Définition - Le produit vectoriel de deux vecteurs →u et →v est le vecteur →u×→v qui satisfait les propriétés suivantes : →u×→v est perpendiculaire à →u et à →v; ‖→u×→v‖=‖→u‖‖→v‖|sinθ|
Pour additionner ces trois vecteurs, on peut d'abord ajouter les deux vecteurs 𝐔 et 𝐕, puis ajouter 𝐖. Comme nous pouvons le voir sur notre graphique, 𝐔 plus 𝐕 n'est qu'un autre vecteur unique, donc 𝐔 plus 𝐕 entre parenthèses plus 𝐖 n'est qu'une somme de ce nouveau vecteur 𝐔 plus 𝐕 avec le troisième vecteur 𝐖.
On distingue trois types de vecteurs: vecteurs libres, glissants et liés. Vecteur libre : Un vecteur libre est défini par sa direction, son sens et sa valeur, son point d'application (origine) pouvant être quelconque dans l'espace. Exemple : le vecteur de l'accélération de la pesanteur est un vecteur libre.
Vecteur : objet mathématique représenté par un segment fléché dont les caractéristiques sont : le point d'application, la direction, le sens et la norme (dite aussi valeur ou intensité).
Définition d'un vecteur
En effet, un vecteur est défini par sa longueur (longueur du segment), sa direction (position, orientation de la flèche) et son sens (vers la droite ou la gauche).
Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul. Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.
Comment savoir si deux vecteurs sont orthogonaux ? Pour vérifier que deux vecteurs sont orthogonaux cela revient à calculer le produit scalaire entre les deux :- s'il est nul, ils sont orthogonaux (perpendiculaires),- s'il est différent de 0 ils ne sont pas orthogonaux.
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
On détermine si cette égalité est vérifiée. Deux vecteurs \overrightarrow{u}\begin{pmatrix} x \cr\cr y \end{pmatrix} et \overrightarrow{v}\begin{pmatrix} x' \cr\cr y' \end{pmatrix} sont colinéaires si et seulement si xy'-x'y =0.
On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires. Le vecteur nul →0 est colinéaire à tout vecteur.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Un scalaire est une quantité physique qui n'est spécifié que par sa grandeur. On peut l'exprimer avec un nombre, suivi ou non d'une unité (1 kg, 30 sec, 3 °C, ...).
Le vecteur est, en physique (La physique (du grec φυσις, la nature) est étymologiquement la...), ce qui permet de modéliser des grandeurs qui ne peuvent être complètement (Le complètement ou complètement automatique, ou encore par anglicisme complétion ou...) définies par un nombre. seul ou une fonction numérique. ...
Les couples de points (A ; A'), (B ; B') et (C ; C') définissent un vecteur caractérisé par : - une direction : celle de la droite (AA'), - un sens : de A vers A', - une longueur : la longueur AA'.
Sommaire. Les vecteurs position, vitesse et accélération permettent de décrire le mouvement d'un système. Leur écriture n'est pas la même dans un repère fixe ou dans un repère mobile.
Le vecteur vitesse est défini comme un déplacement par unité de temps et a une direction et un sens. La vitesse moyenne du mouvement d'un objet est une grandeur scalaire également mesurée comme une distance par unité de temps : v i t e s s e m o y e n n e d i s t a n c e t o t a l e d u r é e t o t a l e = .
Il existe un vecteur nul : il s'agit du vecteur dont l'origine et l'extrémité sont confondues. Autrement dit, soit un point A(x1, y1), le vecteur AA est le vecteur nul.
Un vecteur libre caractérise donc une grandeur, une direction et un sens mais son origine ou son extrémité peut être fixée librement. Tout vecteur libre peut être représenté par un élément quelconque de l'ensemble des vecteurs géométriques qu'il désigne.
Vecteur nul :
Lorsque deux points A A A et B B B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 → \overrightarrow{0} 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .