Définition Un angle aigu est un angle dont la mesure est comprise entre 0° et 90°.
Angle aigu désigne, dans le domaine de la géométrie, un angle saillant inférieur dont la mesure est comprise entre 0° et 90°. Exemple : Le contraire d'un angle aigu est un angle obtus, sa mesure est donc supérieure à 90°.
Géométrie plane
Un triangle acutangle (ou plus simplement triangle aigu) est un triangle dont tous les angles sont aigus, par opposition au triangle obtusangle comportant un angle obtus (ainsi que deux angles aigus), et au triangle rectangle dont un angle est droit et les deux autres sont aigus.
Angle aigu : Angle supérieur à 0 degré et inférieur à 90 degrés. Angle droit : Angle de 90 degrés. Angle obtus : Angle entre 90 et 180 degrés.
En mathématiques, un angle obtus est un angle saillant dont la mesure est strictement supérieure à celle de l'angle droit, autrement dit un angle dont la mesure en degrés est comprise entre 90° exclu et 180° (soit entre π/2 exclu et π radians ).
Définition Un angle nul est angle dont la mesure est égale à 0°. Définition Un angle aigu est un angle dont la mesure est comprise entre 0° et 90°. Remarque Un angle aigu peut toujours être contenu dans un angle droit.
Un angle obtus mesure entre 90° et 180°. Un angle obtus est plus "grand" qu'un angle droit, plus "ouvert".
Certains angles aigus ont une mesure particulière comme 45 ou 60 degrés. 45° est la moitié de l'angle droit, 60° est la mesure d'un angle d'un triangle équilatéral.
Lorsque la mesure de l'angle est entre 0 et 90 degrés, l'angle est dit angle aigu. Lorsque la mesure de l'angle est entre 90 et 180 degrés, l'angle est dit angle obtus.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles. On le nomme par les lettres qui se trouvent à chacun de ses sommets.
Le triangle ABC, avec trois côtés égaux au rayon des cercles, est équilatéral et chacun de ses angles vaut 60°.
Angle dont la mesure en degrés est égale à 360.
Lorsque la mesure de l'angle est entre 0 et 90 degrés, l'angle est dit aigu. Lorsque la mesure de l'angle est entre 90 et 180 degrés, l'angle est dit obtus.
L'explication généralement répandue est que l'utilité originelle des 360° du système sexagésimal est de faciliter le calcul des fractions (et des multiplications). En effet, 360 étant le multiple de 1, 2, 3 et 5 il se divise par ces nombres ainsi que par leur multiples 6, 8, 9, 10, 12, 15, etc.
L'angle au centre d'un cercle étant égal à 360°, chaque degré sera égal à un millimètre. Dans notre exemple on souhaite tracer un angle de 80°. On commence par tracer à l'aide d'un compas l'angle remarquable le plus proche de 80°, dans notre cas on trace donc un angle de 90°. La longueur d'arc sera égale à 90 mm.
Un angle de 75° peut également s'obtenir, cette fois très précisément, par simple tracé au compas. La méthode est relativement simple : on commence par tracer un angle de 90°, puis sa bissectrice, pour obtenir un angle de 45°.
L'angle aigu et un angle dont l'ouverture est inférieure à celle de l'angle droit. C'est un angle fermé. Un angle obtus est un angle dont l'ouverture est supérieure à l'angle droit.
Les premiers à avoir « inventé » les angles, ce sont probablement des Grecs ! Le mot « angle » est défini dans les Éléments d'Euclide, un livre qui résume une partie des connaissances en géométrie.
Pour déterminer la valeur d'un angle, il faut prendre l'arc-tangente de la hauteur divisée par la largeur, le tout multiplié par 180/π pour obtenir la valeur en degré. L'angle de la pente peu servir à obtenir l'inclinaison d'un toit, d'une charpente...
Pour traçer un angle de 45°, il suffit de traçer une diagonale d'un carré. Un angle à 135° est égal à 90° + 45°, donc on traçe une diagonale d'un carré dans les sens opposé.
Un triangle plat est un triangle dont les sommets sont alignés. Un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Les deux angles adjacents au troisième côté sont alors de même mesure.
Le fait qu'un tour fasse 360° (et donc un angle droit 90°) remonte aux Babyloniens qui comptaient en base 60. Lors de la Révolution Française, le grade a été proposé pour remplacer le degré : un angle droit fait alors 100 grades. Mais il est rarement utilisé (sauf parfois en cartographie où il a ses avantages).