La méthode graphique permet la résolution de problèmes linéaires simples de manière intuitive et visuelle. Cette méthode est limitée à problèmes de deux ou trois variables de décision puisqu'il n'est pas possible d'illustrer graphiquement plus de trois dimensions.
Lorsqu'un système d'équations est représenté par un graphique, il suffit de regarder le point d'intersection des droites afin de déterminer le couple solution (x,y) . On remarque que les droites se rencontrent au point (2,7) , ce qui est le couple solution du système d'équations.
I. Lire le graphique
1) Il faut repérer 3 choses : le titre, la grandeur variable et la grandeur mesurée. 2) Trouver les coordonnées d'un point remarquable A chaque valeur de la grandeur variable (axe horizontal) correspond une valeur de la grandeur mesurée (axe vertical).
Graphique circulaire (description des composantes) Graphique à barres (comparaison des éléments et relations, série chronologique, distribution de fréquences) Graphique linéaire (série chronologique, distribution de fréquences) Nuage de points (analyse des relations)
Exemple (partie 2): méthode Graphique. D'abord, on trace le système de coordonnées. On représente la variable "x" en abscisse et "y" en ordonnée, qu'on montre dans cette figure. On divise numériquement les axes selon les valeurs que les variables peuvent avoir par rapport aux contraintes du problème.
Résoudre graphiquement l'inéquation f(x) < k sur [a ; b], c'est trouver les abscisses de tous les points de la courbe de f dont l'ordonnée est strictement inférieure à k. On trace la droite formée de tous les points d'ordonnée k. On cherche tous les points de la courbe qui sont en dessous de cette droite.
Résoudre graphiquement une inéquation du type , c'est déterminer les abscisses des points de la courbe situés strictement en dessous de la courbe . De la même manière : Résoudre graphiquement l'inéquation , c'est déterminer les abscisses des points de la courbe situés sur et en dessous de la courbe .
On place les valeurs pour lesquelles f change de sens de variation dans la première ligne du tableau de variations. On trace une flèche qui monte dans la deuxième ligne du tableau lorsque f est croissante et une flèche qui descend lorsque f est décroissante.
On peut retenir l'ordre des signes grâce au raisonnement suivant : si le coefficient directeur a est positif, la fonction est croissante donc d'abord négative puis positive. si le coefficient directeur a est négatif, la fonction est décroissante donc d'abord positive puis négative.
Pour que f(x)=0, il faut forcément que le numérateur soit nul. Donc il faut résoudre l'équation suivante: C'est une équation du 3e degré, mais avec une racine évidente en x=0, donc tu peux en tirer une équation du 2e degré, qu'il faut résoudre.
Réponse : pour déterminer l'antécédent d'un nombre par une fonction linéaire, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 48 autrement dit 6x = 48, soit x = 486 = 8, donc l'antécédent de 48 par f est 8.
On peut déterminer graphiquement la valeur de la dérivée d'une fonction f en un réel a, en utilisant la tangente à la courbe représentative de f au point d'abscisse a. On considère la fonction f, dont la courbe représentative C_f est donnée ci-dessous. T_0 est la tangente à C_f au point d'abscisse 0.
Si votre regard monte, elle est CROISSANTE. A l'inverse, si votre regard descend, elle est DECROISSANTE. Enfin, si les deux extrémités sont identiques, elle est STABLE. p ou ne font que descendre ou n'évoluent pas, la courbe est REGULIERE ou CONTINUE.
Une solution est faisable si elle vérifie les contraintes. z est appelé fonction objective. À chaque solution elle associe une valeur. Une solution est optimale si elle est faisable et maximize la fonction objective.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
La fonction f est constante : sa représentation graphique est une droite d'équation : y = b. Cette droite est parallèle à l'axe des abscisses. On a f(x) = ax. La fonction f est linéaire : sa représentation graphique est une droite d'équation : y = ax, qui passe par l'origine du repère.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Résoudre une équation d'inconnue x, c'est déterminer toutes les valeurs de x (si elles existent) pour lesquelles l'égalité est vraie. Chacune de ces valeurs est appelée une solution de l'équation.
Un quotient, dont le dénominateur n'est pas nul, est nul si et seulement si le numérateur est nul. Une valeur qui annule le dénominateur est appelée valeur interdite.