Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
Si BC² = BA² + AC² , alors ABC est un triangle rectangle en A. Remarque : Notion de réciproque : On écrit le théorème de Pythagore avec les lettres définissant le triangle indépendamment des valeurs numériques.
Cas n° 1 : Si, dans un triangle, le carré de la longueur du côté le plus long est égal à la somme des carrés des longueurs des 2 autres côtés, alors ce triangle est rectangle. AUTRE FORMULATION : Si un triangle ABC est tel que AB² + AC² = BC², alors il est rectangle en A.
Énoncé de la Réciproque de Pythagore:
Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Avec la reciproque de Thalès on peut savoir si les deux droites sont parallèles. Mais seulement si les cotes des triangles sont proportinnels deux a deux. Pythagore ce n'est qu'avec un triangle rectangle, il sert a connaitre la mesure d'un côté.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
le théorème de Pythagore :
le carré de la longueur de l'hypoténuse est égale à la somme des carrés des longueurs des deux autres côtés. On peut calculer la longueur d'un côté d'un triangle rectangle quand on connaît les deux autres côtés. Pour cela, on prend la racine carrée d'un nombre.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
Théorème de Pythagore: "Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés". Le théorème de Pythagore permet de calculer la longueur d'un côté d'un triangle rectangle, à condition de connaitre la longueur des 2 autres côtés.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
Formule du cosinus
Dans un triangle rectangle, le cosinus d'un angle est le nombre égal à la longueur du côté adjacent divisée par la longueur de l'hypoténuse. Ci-contre, le cosinus de 48° (cos(48) sur la calculatrice) est le nombre qui est égal à la longueur AC divisée par la longueur BC.
Pour nommer les côtés d'un triangle, nous juxtaposerons les lettres des sommets qu'ils joignent. Cela veut donc dire que pour un triangle appelé ABC, nous aurons un côté nommé AB, un autre AC et le dernier BC.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. une symétrie axiale conserve l'orthogonalité. une symétrie centrale conserve l'orthogonalité.
Si par exemple le sommet de l'angle droit est A et le coté [BC] l'hypoténuse alors la relation de Pythagore s'écrit:BC²=AB²+AC² . donc ,le th. de Pyth. met en relation les longueurs des cotés dans un triangle rectangle et il permet de calculer l'une de ses longueurs à partir des deux autres .
La diagonale d'un carré est ce segment qui joint deux arêtes non consécutives de la figure. Ainsi, chaque carré a deux diagonales. Pour le dire autrement, les diagonales joignent un sommet avec celui qui est obliquement opposé.
Si un triangle est rectangle, le carré de la longueur de l'hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés. Ce théorème permet notamment de calculer l'une des longueurs à partir des deux autres.
GÉOM. Côté opposé à l'angle droit dans un triangle rectangle. Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (Théorème de Pythagore).
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Quand on coupe deux droites sécantes au point A par deux droites parallèles (MN) et (BC), on obtient deux triangles ABC et AMN. Le théorème de Thalès énonce que, dans ce type de configuration, les longueurs des côtés d'un triangle sont proportionnels aux côtés associés de l'autre triangle.
Le théorème de Pythagore et sa réciproque s'utilisent dans des contextes différents: Le théorème de Pythagore permet de trouver la longueur d'un côté d'un triangle rectangle. La réciproque du théorème de Pythagore permet de vérifier qu'un triangle est rectangle.