m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
On calcule la valeur du coefficient directeur directeur m à partir des coordonnées des points A et B : . On lit sur le graphique la valeur de l'ordonnée à l'origine p (c'est l'intersection entre la droite et l'axe des ordonnées). On trouve p = 1. L'équation de la droite (d1) est donc : y = –2x + 1.
D'une façon générale, le coefficient multiplicateur associé à une augmentation est : k = 1 + t où t est le taux d'augmentation (ex : 1,35 = 1 + 0,35), et valeur finale = valeur initiale * k.
Remarques : - Si le coefficient directeur est positif alors la droite « monte ». On dit que la fonction affine associée est croissante. - Si le coefficient directeur est négatif alors la droite « descend ». On dit que la fonction affine associée est décroissante.
Pour trouver a et b, il faut résoudre le système. Par addition membre à membre, on obtient 2b = 4, soit b = 2. a + 2 = -3, soit a = -5. f est une fonction affine dont la représentation graphique est une droite d qui passe par les points A(0 ; 6) et B(1 ; 2).
Une formule générale
En fait, on a une méthode générale pour déterminer le coefficient directeur d'une fonction affine : c'est le quotient de la différence des ordonnées par la différence des abscisses correspondantes.
L'antécédent de " 1 ": Pour déterminer l'antécédent de " 1 ", il suffit de résoudre l'équation: f ( x) = 1. Calcul du discriminant = b2 - 4 ac: = 22 - 4 x 1 x 1 = 0.
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Si une fonction affine est une fonction constante, c'est-à-dire qu'elle est de la forme 𝑓 ( 𝑥 ) = 𝑏 , la représentation graphique de cette fonction est toujours une droite horizontale passant par le point ( 0 ; 𝑏 ) .
Définitions et propriété Définition Une fonction f définie sur \mathbb{R} est dite affine lorsqu'il existe deux réels m et p tels que, pour tout x \in \mathbb{R}, f(x)=m x+p. Les nombres m et p sont respectivement appelés le coefficient directeur et l'ordonnée à l'origine de f.
Une fonction affine est définie par son coefficient a et le nombre b. Il suffit ainsi de connaître les valeurs de a et b pour être en mesure de calculer l'image et l'antécédent de tout nombre par la fonction. Soit la fonction affine définie par : f\left(x\right)=2x-4.
Pour déterminer l'équation de la tangente d'une courbe représentative en un point donné, il y a une formule prête à l'emploi. La formule pour l'équation réduite de la tangente de en est donnée par : y = f ′ ( a ) ( x − a ) + f ( a ) Voyons maintenant comment l'utiliser avec un exemple concret.
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés). Remarque : une fonction linéaire est une fonction affine particulière. Dans ce cas : b = 0. On a f(–5) = 5 × (–5) – 3 = –28 .
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
→ Calcul du coefficient directeur :
par l'origine, son équation est y = kx + b, où k est le coefficient directeur de la droite et b l'ordonnée à l'origine. Si la droite passe par l'origine (zéro), alors b = 0. Le coefficient directeur a souvent une unité en physique chimie !
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
Où trouver le coefficient de salaire ? Le coefficient de salaire doit obligatoirement figurer sur la fiche de paie de chaque salarié et sur son contrat de travail.
Coefficient de proportionnalité
sont proportionnels à sont proportionnels à On obtient le couple (15, 20) en multipliant les termes du couple (3, 4) par le coefficient 5 : Coefficient qui peut s'exprimer sans approximation par un pourcentage : 3 vaut 75 % de 4 et 15 vaut 75 % de 20.
Le nombre 1,3 x est appelé « l'image de x par la fonction f ». On note f(x) cette image, on lit « f de x » et on écrit f(x) = 1,3 x. La fonction linéaire f traduit une situation de proportionnalité et le nombre 1,3 est appelé le coefficient de f.