Dans une expression sans parenthèses, les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. On dit que la multiplication et la division sont prioritaires sur l'addition et la soustraction.
Pour calculer une expression sans parenthèses, on effectue les divisions et les multiplications avant les additions et soustractions . Quand une expression comporte plusieurs multiplications ou divisions , on effectue d'abord le calcul le plus à gauche . De même pour les additions ou soustractions.
Règles : Dans une expression, on effectue d'abord les calculs entre les parenthèses les plus intérieures puis les multiplications et les divisions de gauche à droite et, enfin, les additions et les soustractions de gauche à droite. Exemple : Calcule A = 7 + 2 × (5 + 7) – 5.
Calculer la valeur d'une expression littérale, c'est attribuer un nombre à chaque lettre de l'expression afin d'effectuer le calcul. Calculer A = 2x3 − y2 + 8(x − 1) lorsque x = − 2 et y = − 5. A = 2 × x3 − y2 + 8 × (x − 1) On écrit les signes × sous-entendus.
On calcule la valeur d'une expression littérale lorsque l'on attribue une valeur aux lettres contenues dans l'expression. Si une même lettre est utilisée plusieurs fois, on lui attribue le même nombre à chaque fois. Exemple 1 : Calculer l'expression A = 5 × ( 6 − x ) + 3 x − 7 y lorsque et .
Règle des signes : Lorsqu'on divise deux nombres relatifs : – s'ils sont de même signe, le résultat est positif ; – s'ils sont de signe contraire, le résultat est négatif.
Le calcul littéral est un calcul avec des nombres et des lettres où chaque lettre désigne une inconnue (nombre qu'on ne connaitpas, dont on ne sait pas la valeur). Voici la formule de base du calcul littéral : ka+kb = k(a+b) ou (a+b)k.
Signe moins devant une parenthèse :
Quand les parenthèses sont précédées du signe moins et qu'elles ne sont pas suivie du signe multiplié ou divisé, on peut supprimer ce signe moins et les parenthèses à condition de changer tous les signes dans la parenthèse.
Une expression mathématique est une combinaison de symboles finie et logique. Ces symboles peuvent représenter des nombres, des variables, des opérations, des fonctions et d'autres symboles syntaxiques tels que des parenthèses.
C'est quoi une expression ? On parle d'expression mathématique pour les opérations numériques : Le résultat d'une addition est une somme. Le résultat d'une soustraction est une différence.
Dans une expression sans parenthèses, les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. On dit que la multiplication et la division sont prioritaires sur l'addition et la soustraction.
Priorités de calcul : Les calculs se font dans l'ordre des priorités suivant : 1/ Les calculs entre parenthèses 2/ Les puissances 3/ La multiplication et la division 4/ L'addition et la soustraction 5/ En cas d'opérations de mêmes priorités, de gauche à droite.
L'ordre des opérations à prioriser dans un calcul
on commence toujours par les calculs entre parenthèses, puis les puissances, les multiplications ou les divisions et enfin pour terminer les additions ou soustractions.
Exemple : Vérifier que (a+b)(a−b)=a2−b2 ( a + b ) ( a − b ) = a 2 − b 2 c'est calculer (a+b)(a−b)=a2−a∗b+b∗a−b2=a2−b2 ( a + b ) ( a − b ) = a 2 − a ∗ b + b ∗ a − b 2 = a 2 − b 2 donc les 2 écritures sont équivalentes ce qui signifie que les 2 expressions sont égales.
La règle est simple. Entre une lettre et un nombre ou entre deux lettres, on peut supprimer le signe x. Remarque 1: On écrit le nombre en premier, car en francais, on dit 5 pommes et non pommes 5 , donc en mathématiques on dit 5d et non d5. Attention : 5 x 3 = 15 et pas 53 !
On calcule la valeur d'une expression littérale lorsque l'on attribue une valeur aux lettres contenues dans l'expression. Si une même lettre est utilisée plusieurs fois, on lui attribue le même nombre à chaque fois. Exemple 1 : Calculer l'expression A = 5 × ( 6 − x ) + 3 x − 7 y lorsque et .
Règle 1: Pour additionner des nombres de même signe on garde le signe et on ajoute les valeurs. Règle 2: Pour additionner des nombres de signes différents, on prend le signe de celui qui a la plus "grande valeur" et on fait "plus grand moins plus petit".
Deux règles de priorité
Quand il y a des parenthèses, on effectue en premier les calculs entre parenthèses. Quand il y a plusieurs signes opératoires, on effectue les multiplications et les divisions avant les additions et les soustractions.
Additionner deux nombres entiers négatifs (-,-)
On procède comme avec les entiers positifs, mais avec le sens négatif des nombres. La somme de deux nombres entiers négatifs donne toujours un nombre entier négatif. Puisque les deux nombres, −6 et −3, sont négatifs, la réponse sera négative aussi.
On calcule la valeur d'une expression littérale lorsque l'on attribue une valeur aux lettres contenues dans l'expression. Si une même lettre est utilisée plusieurs fois, on lui attribue le même nombre à chaque fois. Exemple 1 : Calculer l'expression A = 5 × ( 6 − x ) + 3 x − 7 y lorsque et .
Une formule (expression d'une relation entre des variables) ou une expression littérale (résultat d'un programme de calcul) permettent de décrire une situation générale, le recours à la lettre étant un moyen de s'abstraire de valeurs numériques particulières.