50 = 25 + 25. 60 = 20 + 20 + 20.
Décomposition d'un nombre en produits de facteurs premiers
Exemple : On divise le nombre à décomposer autant de fois que possible par 2, puis par 3, par 5, par 7, par 11… en suivant la liste des nombres premiers successifs.
Les diviseurs de 50 sont : 1;2; 5; 10 ; 25; 50. Donc : pgcd(25; 50) = 25 (car 50 est un multiple de 25).
Décomposition des nombres en produit des facteurs premiers : 40 = 23 × 5.
30=5×6 30 = 5 × 6 On remarque que le facteur 5 est premier, mais que 6 ne l'est pas. Pour obtenir la factorisation première de 30 , on devra factoriser le nombre 6 . 30=5×6⇒30=5×2×3 30 = 5 × 6 ⇒ 30 = 5 × 2 × 3 Cette nouvelle factorisation est première, car tous les facteurs sont premiers.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
50 : en effet, 50 est bien un multiple de lui-même, puisque 50 est divisible par 50 (on a 50 / 50 = 1, donc le reste de cette division est bien nul) 100 : en effet, 100 = 50 × 2. 150 : en effet, 150 = 50 × 3. 200 : en effet, 200 = 50 × 4.
Le nombre 50 (cinquante) est l'entier naturel qui suit 49 et qui précède 51.
Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 32 × 5, soit 3 × 3 × 5.
La factorisation première de 60 est 22 × 3 × 5. Les branches terminales révèlent la décomposition en facteurs premiers du nombre 60, soit : 60 = 2² × 3 × 5.
Tout nombre entier supérieur ou égal à 2 est décomposable en un produit de nombres premiers, unique à l'ordre près des facteurs. Exemples : 32 = 2x2x2x2x2.
Il lui faut donc marquer cette fois 9 points car : 25 = 6 + 10 + 9. Pour ne pas se tromper dans les calculs quand on veut décomposer un nombre compris entre 21 et 29, on peut s'aider de petits bouts de bois, de bonbons ou de petits morceaux de papier.
Pour décomposer un nombre, on donne la valeur de chaque chiffre du nombre. Il y a plusieurs types de décomposition : la décomposition « additive » ( = utilisation de l'addition) 33545 = 30 000 + 3 000 + 500 + 40 + 5.
51 est un multiple de 3 et 17. 51 est divisible par 3 et 17. Un nombre entier peut se décomposer en produit de facteurs premiers.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. 1er cours offert !
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs.
Dans ce tableau, les nombres premiers sont ceux en couleur orange. On peut aussi en écrire directement la liste : 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73, 79, 83,89,97\\ 101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,...
Décomposer un nombre, c'est indiquer la position (la classe et le rang) de chacun des chiffres qui composent ce nombre. 42 603 = 4 × 10 000 + 2 × 1 000 + 6 × 100 + 3 × 1.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Le nombre 36 peut être donc décomposé en produit de facteurs premiers 2, 2, 3, 3.
Voici des décompositions de nombres en facteurs premiers. 24 = 2 × 2 × 2 × 3, car 2 et 3 sont des nombres premiers.