Une médiatrice est une droite perpendiculaire à un segment qui passe par le milieu de ce même segment. On peut tracer la médiatrice d'un segment de deux façons : Méthode avec un compas et une règle. Méthode avec une équerre.
En géométrie plane, la médiatrice d'un segment est l'ensemble des points équidistants des deux extrémités du segment. Cet ensemble est la droite passant par le milieu du segment et qui est perpendiculaire au segment.
La médiatrice d'un segment est la droite qui passe par le milieu de ce segment, et qui lui est perpendiculaire. La bissectrice est une demi-droite qui coupe un angle en deux. En fait, la médiatrice est la bissectrice d'un angle plat, à 180°.
Théorème. Pour tout segment, tout point de la médiatrice du segment est à égale distance des extrémités de ce segment.
Si un point M appartient à la médiatrice (d) d'un segment [AB] alors il est à égale distance de A et de B. On a : MA = MB. Si un point M est à égale distance de deux points A et B, alors M est sur la médiatrice de [AB].
médiatrice n.f. Droite perpendiculaire à un segment et passant par son milieu.
Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
La médiatrice d'un segment est la droite qui coupe ce segment en son milieu perpendiculairement. Dans un triangle, les médiatrices sont concourantes en un point appelé centre du cercle circonscrit au triangle.
La médiatrice d'un segment est la droite perpendiculaire à ce segment en son milieu. G est le milieu du segment [AB] et $d \perp (AB)$ donc d est la médiatrice du segment [AB].
Tracer la droite passant perpendiculairement par le milieu d'un côté On trace la droite passant perpendiculairement et par le milieu d'un premier côté. On obtient la première médiatrice. On trace la droite passant perpendiculairement par le milieu de \left[ BC\right], c'est-à-dire la médiatrice de \left[ BC\right].
La médiatrice d'un segment de droite, délimité par deux points d'un plan, est une ligne qui coupe perpendiculairement (90°) le segment en deux parties égales. Pour trouver son équation, il vous faut trouver les coordonnées du milieu du segment, la pente entre ces deux points, puis l'opposée inverse de cette pente.
Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Première méthode : avec une règle graduée et une équerre On commence par placer le milieu I du segment avec la règle. Puis on trace la perpendiculaire à [AB] passant par I avec l'équerre. On prolonge ensuite le trait avec la règle pour obtenir toute la médiatrice.
Un point M est sur le segment [AB] si et seulement si ABk AM = avec 0 < k < 1 .
Milieu, médiatrice, plan médiateur
L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB]. Le milieu du segment [AB] peut donc être défini comme l'intersection de la droite (AB) avec la médiatrice du segment [AB].
Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle.
Médiatrice d'un segment : Droite qui passe perpendiculairement en son milieu, Hauteur d'un triangle : Droite qui est perpendiculaire à un côté et qui passe par le sommet opposé, Médiane d'un triangle : Droite qui passe par le milieu d'un côté et par le sommet opposé.
Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la hauteur et la bissectrice.
Symbole. Le symbole utilisé est « ∩ », qui se lit « inter » ou « intersection ». Ainsi A ∩ B se lit « A inter B » ou « l'ensemble A intersection l'ensemble B ».
La rencontre de l'offre et de la demande permet de définir le point d'équilibre. Ce point définit le prix pour lequel l'offre égalise la demande, c'est-à-dire le point où se réalise l'échange. On appelle les coordonnées correspondantes prix d'équilibre et quantité d'équilibre.
En mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours. Les droites A, B, et C concourent en Y.
Une demi-droite est une droite délimitée par un point d'un côté et infinie de l'autre. Elle est désignée par une lettre majuscule entre crochets d'un côté et une autre lettre majuscule entre parenthèses de l'autre. Un segment est un morceau de droite délimité par deux points appelés « extrémités ».
Tracer un segment consiste à relier deux points distincts par une ligne. On trace une droite en plaçant la règle sur une feuille de papier et en longeant l'un de ses bords avec un crayon à papier bien taillé.
Méthode pour tracer un cercle circonscrit
Construire la médiatrice du segment AC. Construire la médiatrice du segment BC. Placer la pointe sèche du compas sur le centre du cercle (point d'intersection des trois médiatrices) et la pointe à mine sur un des sommets du polygone pour finalement tracer le cercle.