Comment justifier qu'une fonction est définie ?

Interrogée par: Marc Leclerc  |  Dernière mise à jour: 10. Juli 2024
Notation: 4.4 sur 5 (34 évaluations)

Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 4 x + 8 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 4 x est supérieur ou égal à − 8 .

Comment justifier qu'une fonction est bien défini ?

Pour montrer qu'une application est bien définie, il faut s'assurer que pour chaque antécédent x on définit bien une image unique y dans l'ensemble d'arrivée (d'où l'importance de l'ensemble d'arrivée).

Comment savoir si une fonction est définie ?

f est définie si et seulement si l'expression située sous le radical est positive ou nulle. C'est à dire, ici, si et seulement si x − 1 ⩾ 0 x - 1\geqslant 0 x−1⩾0 donc x ⩾ 1 x\geqslant 1 x⩾1. L'intervalle est fermé en 1 car x peut prendre la valeur 1.

Comment dire qu'une fonction est définie sur R ?

Re : Dire qu'une fct est définie sur R

Il faut simplement montrer que le dénominateur ne peut jamais être nul.

Comment donner la définition d'une fonction ?

Une fonction est une relation mathématique qui prend une valeur et lui en associe une autre. On note souvent f la fonction et x le nombre de départ. On note f(x) le nombre d'arrivée. Par exemple, fonction f(x) = 2x + 3 est une fonction qui a tout x associe 2x+3.

Ensemble de définition d'une fonction

Trouvé 35 questions connexes

Comment déterminer DF ?

domf={x∈R|f(x)∈R}. Restrictions pour déterminer le domaine d'une fonction algébrique : Si la formule contient un dénominateur, celui-ci ne doit pas être nul. Ainsi, si f est une fraction algébrique P(x)Q(x), alors domf={x∈R|Q(x)≠0}.

Quelle est le domaine de définition de la fonction ?

L'ensemble de définition d'une fonction est l'ensemble des éléments de son ensemble de départ qui ont une image par cette fonction. Par exemple, celui de la fonction f : x↦x² est ℝ et celui de la fonction g : x↦1/x est l'ensemble des réels privé de 0.

Comment montrer qu'une fonction est definie et dérivable sur R ?

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .

Comment justifier qu'une fonction exponentielle est définie sur R ?

La fonction exponentielle est strictement croissante et continue sur R donc, d'après le théorème de la bijection : elle réalise une bijection de R sur exp(R) . signifie que pour tout réel y > 0, il existe un et un seul x réel tel que y = exp(x).

Comment justifier qu'une fonction est continue sur R ?

Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).

Qu'est-ce qu'une fonction définie sur un intervalle ?

Définition : Définir une fonction f sur un intervalle [a ; b], c'est donner un procédé qui, à tout nombre x de l'intervalle [a ; b], associe un et un seul nombre réel noté f(x). f( ) a b x x → » où « )(fx x » se lit « à x, associe f de x ». Définitions : Soit f une fonction définie sur l'intervalle [a ; b].

Comment analyser une fonction ?

Pour étudier une fonction
  1. On calcule la dérivée de la fonction.
  2. On étudie le signe de la dérivée.
  3. On calcule les limites de la fonction aux bornes de son ensemble de définition ainsi que les valeurs de la fonction pour les valeurs de x où f' change de signe. Enfin on est en mesure de dessiner son tableau de variations.

Comment montrer qu'une fonction est bien définie sur un intervalle ?

Si une fonction f f f est définie et continue sur un intervalle [ a ; b ] [a; b ] [a;b] ; alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), il existe au moins un réel c c c compris entre a a a et b b b tel que f ( c ) = k f(c)=k f(c)=k.

Comment prouver qu'une suite est bien définie ?

Solution : 1. (un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.

Comment justifier qu'une suite est définie sur n ?

Pour montrer qu'une suite (Un) n'est pas arithmétique, il suffit de calculer les 3 premiers termes U0, U1 et U2 (ou parfois les 4 ou 5 premiers, si les 3 premiers ne suffisent pas) et de constater que U_2 - U_1 \ne U_1 - U_0.

Comment étudier le signe de la dérivée d'une fonction exponentielle ?

Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.

Quel est le signe de l'exponentielle ?

La fonction exponentielle, notée exp : - est définie, continue, dérivable et strictement croissante sur R.

Quel est le signe de Ex ?

Définition 1 : On appelle fonction exponentielle la fonction f définie sur R par f(x) est l'unique antécédent y de x par la fonction ln c'est-`a-dire ln(y) = x. On la note exp et on note également f(x) = exp(x)=ex.

Comment savoir si une fonction est indéfiniment dérivable ?

La dérivée k-i`eme se note f(k) et on a f(k) = (f(k−1)) . On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.

Comment justifier la dérivabilité d'une fonction sur un intervalle ?

On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .

Comment justifier dérivabilité ?

Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.

Comment trouver le domaine de définition de deux fonctions ?

Pour trouver le domaine de définition de 𝑔 𝑓 , nous devons enlever les valeurs de 𝑥 qui vérifient 𝑓 ( 𝑥 ) = 0 dans cet intervalle. Nous déterminerons les valeurs de 𝑥 pour lesquelles les fonctions affines s'annulent, en considérant les domaines de définition de chaque morceau : 2 𝑥 + 2 = 0 𝑥 = − 1 .

C'est quoi les définitions ?

Formule qui donne le ou les sens d'un mot, d'une expression et qui vise à être synonyme de ce qui est défini.

Comment simplifier une domaine de définition ?

Nous rappelons que pour simplifier une fonction rationnelle, nous trouvons son domaine de définition, factorisons le numérateur et le dénominateur, puis annulons les facteurs partagés sur le domaine de définition. Par conséquent, ( 𝑥 − 2 ) ( 𝑥 + 2 ) = 0 quand 𝑥 = 2 ou quand 𝑥 = − 2 .

Comment représenter un domaine de définition ?

Le domaine de définition et l'ensemble image de la fonction racine carrée 𝑓 ( 𝑥 ) = √ 𝑥 sont [ 0 ; + ∞ [ . Plus généralement, le domaine de définition d'une fonction composée avec la fonction racine carrée d'expression √ 𝑔 ( 𝑥 ) peut être identifié en déterminant les valeurs de 𝑥 satisfaisant 𝑔 ( 𝑥 ) ⩾ 0 .