Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 4 x + 8 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 4 x est supérieur ou égal à − 8 .
Pour montrer qu'une application est bien définie, il faut s'assurer que pour chaque antécédent x on définit bien une image unique y dans l'ensemble d'arrivée (d'où l'importance de l'ensemble d'arrivée).
f est définie si et seulement si l'expression située sous le radical est positive ou nulle. C'est à dire, ici, si et seulement si x − 1 ⩾ 0 x - 1\geqslant 0 x−1⩾0 donc x ⩾ 1 x\geqslant 1 x⩾1. L'intervalle est fermé en 1 car x peut prendre la valeur 1.
Re : Dire qu'une fct est définie sur R
Il faut simplement montrer que le dénominateur ne peut jamais être nul.
Une fonction est une relation mathématique qui prend une valeur et lui en associe une autre. On note souvent f la fonction et x le nombre de départ. On note f(x) le nombre d'arrivée. Par exemple, fonction f(x) = 2x + 3 est une fonction qui a tout x associe 2x+3.
domf={x∈R|f(x)∈R}. Restrictions pour déterminer le domaine d'une fonction algébrique : Si la formule contient un dénominateur, celui-ci ne doit pas être nul. Ainsi, si f est une fraction algébrique P(x)Q(x), alors domf={x∈R|Q(x)≠0}.
L'ensemble de définition d'une fonction est l'ensemble des éléments de son ensemble de départ qui ont une image par cette fonction. Par exemple, celui de la fonction f : x↦x² est ℝ et celui de la fonction g : x↦1/x est l'ensemble des réels privé de 0.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
La fonction exponentielle est strictement croissante et continue sur R donc, d'après le théorème de la bijection : elle réalise une bijection de R sur exp(R) . signifie que pour tout réel y > 0, il existe un et un seul x réel tel que y = exp(x).
Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).
Définition : Définir une fonction f sur un intervalle [a ; b], c'est donner un procédé qui, à tout nombre x de l'intervalle [a ; b], associe un et un seul nombre réel noté f(x). f( ) a b x x → » où « )(fx x » se lit « à x, associe f de x ». Définitions : Soit f une fonction définie sur l'intervalle [a ; b].
Si une fonction f f f est définie et continue sur un intervalle [ a ; b ] [a; b ] [a;b] ; alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), il existe au moins un réel c c c compris entre a a a et b b b tel que f ( c ) = k f(c)=k f(c)=k.
Solution : 1. (un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.
Pour montrer qu'une suite (Un) n'est pas arithmétique, il suffit de calculer les 3 premiers termes U0, U1 et U2 (ou parfois les 4 ou 5 premiers, si les 3 premiers ne suffisent pas) et de constater que U_2 - U_1 \ne U_1 - U_0.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
La fonction exponentielle, notée exp : - est définie, continue, dérivable et strictement croissante sur R.
Définition 1 : On appelle fonction exponentielle la fonction f définie sur R par f(x) est l'unique antécédent y de x par la fonction ln c'est-`a-dire ln(y) = x. On la note exp et on note également f(x) = exp(x)=ex.
La dérivée k-i`eme se note f(k) et on a f(k) = (f(k−1)) . On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.
Pour trouver le domaine de définition de 𝑔 𝑓 , nous devons enlever les valeurs de 𝑥 qui vérifient 𝑓 ( 𝑥 ) = 0 dans cet intervalle. Nous déterminerons les valeurs de 𝑥 pour lesquelles les fonctions affines s'annulent, en considérant les domaines de définition de chaque morceau : 2 𝑥 + 2 = 0 𝑥 = − 1 .
Formule qui donne le ou les sens d'un mot, d'une expression et qui vise à être synonyme de ce qui est défini.
Nous rappelons que pour simplifier une fonction rationnelle, nous trouvons son domaine de définition, factorisons le numérateur et le dénominateur, puis annulons les facteurs partagés sur le domaine de définition. Par conséquent, ( 𝑥 − 2 ) ( 𝑥 + 2 ) = 0 quand 𝑥 = 2 ou quand 𝑥 = − 2 .
Le domaine de définition et l'ensemble image de la fonction racine carrée 𝑓 ( 𝑥 ) = √ 𝑥 sont [ 0 ; + ∞ [ . Plus généralement, le domaine de définition d'une fonction composée avec la fonction racine carrée d'expression √ 𝑔 ( 𝑥 ) peut être identifié en déterminant les valeurs de 𝑥 satisfaisant 𝑔 ( 𝑥 ) ⩾ 0 .