Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
La dérivabilité se démontre usuellement de deux façons : dans l'étude locale (c'est-à-dire en se plaçant dans un voisinage du point étudié), en utilisant directement la définition de l'existence du nombre dérivé à l'aide de limites.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
Graphiquement, si la fonction est définie mais non dérivable en un point, on observe un point anguleux, c'est-à-dire que le tracé de la courbe est « cassé ». Pourquoi ? Parce que la tangente à gauche du point n'est pas la même qu'à droite.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
La fonction valeur absolue prenant deux valeurs différentes suivant les valeurs de x, sa dérivée fera de même. Si x < 0, sa dérivée vaut −1. Si x > 0, sa dérivée vaut 1. La fonction valeur absolue n'est pas dérivable en 0.
L'ensemble des nombres entiers, représenté par le symbole Z, regroupe tous les nombres naturels (entiers positifs) et leurs opposés (entiers négatifs). Z={…,−3,−2,−1,0,1,2,3,…}
L'ensemble ℕ vient de l'appellation naturale attribuée à Peano. Il désigne l'ensemble des nombres entiers naturels (exemples : 0 1 2 3 7). Si l'on note ℕ*, cela signifie que l'on exclut le zéro. L'ensemble ℤ vient de l'allemand zahlen qui signifie compter.
R*+ --> R est la définition d'une application qui prend ses valeurs dans l'ensemble des nombres réels positifs non nul(l'étoile) et dont l'ensemble d'arrivée c'est-à-dire le résultat de l'application ou la fonction est un réel (appartient à R).
Les nombres naturels représentent tous les nombres entiers positifs, incluant le 0. 0. Les nombres entiers sont les nombres qui n'ont pas de partie décimale ou dont la partie décimale est nulle.
L'inverse de l'infiniment petit étant l'infiniment grand, il fallait que le même siècle voie l'apparition du symbole ∞. C'est le mathématicien britannique John Wallis (1616–1703) qui, le premier, abrégea le concept «infini» par ce symbole.
1. Sans limites dans le temps ou l'espace : La suite infinie des nombres. 2. Qui est d'une grandeur, d'une intensité si grande qu'on ne peut le mesurer : Il est resté absent un temps infini.
Ces deux définitions coexistent encore aujourd'hui. Selon les acceptions, la liste des entiers naturels est donc : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; …
On appelle ces nombres : les entiers naturels. Mais parfois, il n'y a rien à compter, le zéro est aussi un nombre entier naturel. C'est d'ailleurs le tout premier. L'ensemble des nombres entiers naturels se note ℕ (vient de l'italien « Naturale »).
Zéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l'italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l'arabe ṣĭfr (صفر), le vide (qui en français a également donné chiffre). Le zéro est noté sous forme d'une figure fermée simple : 0.
Raisonnement par l'absurde, on suppose 1/3 décimal. Donc 1/3 est de la forme a/10^n avec a entier positif. Donc 3a=10^n avec a entier positif. Donc 10^n est un multiple de 3.
Quelques propriétés mathématiques du zéro
On dit que le zéro est un nombre cardinal, représentant l'ensemble vide. C'est le plus petit nombre entier naturel, et également un élément neutre, le seul à ne pas avoir d'inverse : il est à la fois positif et négatif.
Un nombre imaginaire pur est un nombre complexe qui s'écrit sous la forme ia avec a réel, i étant l'unité imaginaire. Par exemple, i et −3i sont des imaginaires purs. Ce sont les nombres complexes dont la partie réelle est nulle. L'ensemble des imaginaires purs est donc égal à iℝ (aussi noté iR).
La fonction valeur absolue est continue en 0, mais elle n'est pas dérivable en 0. Soit f une fonction continue sur un intervalle I. Si a et b sont deux réels de I et si k est un réel compris entre f(a) et f(b), alors il existe au moins un réel x compris entre a et b tel que f(x) = k.
Remarque La fonction valeur absolue est une fonction affine par morceaux. Propriété La fonction valeur absolue est paire. Sa représentation graphique est symétrique par rapport à l'axe des ordonnées.
La valeur absolue d'un nombre est toujours positive. Si un nombre est positif, la valeur absolue de ce nombre est égale au nombre lui-même. Si un nombre est négatif, la valeur absolue de ce nombre est égale à son opposé.