Définition : Soit a et b deux nombres réels. Toute fonction f définie sur R par f(x) = ax + b est appelée fonction affine. Remarque : lorsque b = 0, f(x) = ax. On dit que f est une fonction linéaire.
On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).
On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.
Une fonction linéaire est une fonction « f » qui peut s'écrire sous la forme f (x)=ax où « a » est un nombre connu. « a » est le coefficient directeur de la fonction linéaire f . Exemples : a) g(x)=3 x , g est une fonction linéaire de coefficient directeur 3.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
Si b = 0, c'est-à-dire, f(x) = ax ; alors f est appelée fonction linéaire. Si a = 0, c'est-à-dire, f(x) = b ; alors f est une fonction constante. Si a = 0, c'est-à-dire, f(x) = b ; alors f est une fonction constante.
Définition : Une fonction affine est une fonction qui peut s'écrire sous la forme : f:x ↦ ax + b, où a et b sont deux nombres réels quelconques. Remarque : toute fonction linéaire est une fonction affine telle que b = 0. La fonction f :x ↦ 3x² + 7 n'est pas une fonction affine.
Définition et vocabulaire
Prenons un exemple avec a = − 2 a=-2 a=−2 et b = 5 b=5 b=5. La fonction f qui à un nombre x associe le nombre − 2 x + 5 -2x+5 −2x+5 est une fonction affine définie sur R.
Une fonction affine f est une fonction dont la forme algébrique s'écrit f(x) = ax+b et qui est donc déterminée par les deux nombres a et b. Le nombre a est le coefficient directeur et le nombre b est l'ordonnée à l'origine. Ce vocabulaire est lié à la représentation graphique d'une fonction affine qui est une droite.
Il y a une façon simple de savoir si c'est une fonction ou une relation à l'aide d'un graphique. Il suffit de prendre une règle et à la placer de façon verticale. Si pour chaque valeur de x, il n'y a qu'un seul y, c'est une fonction. On remarque, par exemple, que pour x = 2, il y a deux valeurs de y.
Définition et notations de fonctions affines
Soit a et b deux nombres fixés. En associant à chaque nombre "x" un nombre "ax + b" appelé image de x, on définit une fonction affine f. On notera cette fonction f : x → ax + b . L'image de x sera notée f(x) .
Se dit d'une fonction du premier degré à une variable, qui correspond au produit de cette variable par un nombre réel auquel est ajouté un autre nombre réel et qui s'écrit f(x) = ax + b. Une fonction affine est représentée par une droite. Une fonction linéaire est une fonction affine.
Re : trouver la fonction d'une courbe a partir d'un graphique. Bonjour, Pour trouver l'équation d'une exponentielle, le mieux est de représenter le graphique avec une échelle logarithmique pour les absices. On doit alors obtenir une droite, la pente de la droite correspond à l'échelle caractéristique de l'équation.
Soit la fonction f, définie par f(x) = 2x - 3. f(x) est bien de la forme ax + b, avec a = 2 et b = -3 : c'est donc bien une fonction affine. On va chercher à tracer la droite d'équation y = 2x - 3. Puisqu'il s'agit d'une droite, il suffit de ne trouver que deux points pour la tracer.
Dans un plan muni d'un repère (O ; I ; J), la représentation graphique de la fonction affine x → ax + b est la droite d'équation : y = ax + b. a est le coefficient directeur de la droite et b est son ordonnée à l'origine.
Une fonction linéaire est une fonction simple des mathématiques élémentaires, qui traduit la proportionnalité et qui se traduit en langage mathématique par les termes f(x) = ax. Exemple : f(x)=2x, f(5)=2*5 = 10 on remplace x par 5.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Une fonction est un processus (une machine) qui à un nombre associe un unique nombre. Si on appelle f la fonction et x le nombre de départ, alors : x est la variable ; f ( x ) f(x) f(x) est le nombre associé à x par la fonction f.
Comment détermine t-on les images et les antécédents d'une fonction par calculs et graphiques ? Une fonction est un procédé qui permet d'associer à un nombre, un unique autre nombre appelé image. Si on appelle cette fonction, l'image de x par f sera notée .