Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Dans l'équation y=ax+b y = a x + b , remplacer le paramètre a par le taux de variation donné. Dans cette même équation, remplacer x et y par les cordonnées (x,y) du point donné. Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine.
Le m est la pente de la droite ou son coefficient directeur. Il se calcule par la formule (yB-yA)/(xB-xA).
Propriété : L'équation a x + b y + c = 0 avec a ≠ 0 ou b ≠ 0 est l'équation d'une droite d et, réciproquement, toute droite d a une équation du type a x + b y + c = 0.
L'équation y=mx+p s'appelle équation réduite de la droite d. Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.
Pour trouver a et b, il faut résoudre le système. Par addition membre à membre, on obtient 2b = 4, soit b = 2. a + 2 = -3, soit a = -5. f est une fonction affine dont la représentation graphique est une droite d qui passe par les points A(0 ; 6) et B(1 ; 2).
MÉTHODE – Calcul du coefficient de proportionnalité Pour passer des valeurs d'une grandeur aux valeurs d'une autre, on peut utiliser le coefficient de proportionnalité. Pour trouver ce coefficient, il suffit d'une valeur de la 1re grandeur et de la valeur de la 2e qui correspond. On divise la 2e par la 1re.
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
L'équation cartésienne d'une droite est 𝑦 égale 𝑚𝑥 plus b. Sous cette forme, 𝑚 représente le coefficient directeur et 𝑏 l'ordonnée à l'origine 𝑦. Nous savons que la droite a un coefficient directeur de huit et une ordonnée à l'origine 𝑦 de moins quatre.
Il suffit d'appliquer la relation n=m/M pour déterminer le nombre de mole. Exemple: Calculer le nombre de moles contenues dans 10 g de NaCl.
Si est une droite parallèle à l'axe des ordonnées, tous les points de la droite ont la même abscisse. Son équation réduite s'écrit sous la forme « », où est égal à l'abscisse de n'importe quel point de . L'équation réduite de est donc : « x = x A ».
Cette formule s'écrit aussi : P(A∩B)=P(A)×PA(B). Cette expression s'obtient à partir de la formule initiale en multipliant chacun des membres par P(A).
A partir de l'expression de la fonction
Pour une fonction quelconque (pas forcément affine/linéaire), calculer la valeur pour x=0 . La valeur obtenue est l' ordonnée à l'origine . Pour une équation d'une droite du plan, l'équation a pour forme ax+b a x + b avec b l' ordonnée à l'origine .
A et B n'ont pas la même abscisse, l'équation de (AB) ets de la forme y = ax + b Le point A(-5 ; 4) est un point de la droite donc ses coordonnées vérifient l'équation de (AB) yA = axA + b 4 = -5a + b (1) De même pour le point B(0 ; 6) yB = axB + b 6 = 0a + b (2) Il faut résoudre le système : 4 = -5a + b (1) 6 = 0a + b ...
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
Deux droites tracées dans un repère du plan sont parallèles si et seulement si leurs coefficients directeurs sont égaux. Elles sont perpendiculaires si et seulement si le produit de leurs coefficients directeurs est égal à -1.
La formule pour calculer la pente m d'une droite qui passe par les points P(x1, y1) et Q(x2, y2) est : m=∆y∆x = y2 – y1x2 – x1, où ∆y représente la variation des ordonnées et ∆x représente la variation des abscisses.
Une équation cartésienne de droite est une équation de la forme ax+by+c=0.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
Tableaux de proportionnalité
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la première ligne en multipliant les nombres correspondants de la deuxième ligne par un même nombre.
Lorsque Théo obtient un 11/20 coefficient 4, c'est comme s'il avait obtenu 4 fois la note de 11/20 à coefficient 1. On peut donc considérer qu'il a obtenu les notes suivantes (sans coefficient ou coefficient 1) : 20/20.
Pour calculer le coefficient 2, il suffit de diviser la valeur finale de la valeur initiale. Exemple : Si un capital de 1000€ a généré des intérêts de 500€, le coefficient 2 serait de 1,5 (1500€ / 1000€).