Les vingt-cinq nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, et 97.
Concernant 16, la réponse est : Non, 16 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 16) est la suivante : 1, 2, 4, 8, 16. Pour que 16 soit un nombre premier, il aurait fallu que 16 ne soit divisible que par lui-même et par 1.
Liste des diviseurs de 16 : 1, 2, 4, 8, 16 Liste des diviseurs de 9 : 1, 3, 9 Comme 1 est leur seul diviseur commun, alors 16 et 9 sont premiers entre eux.
Le nombre 16 (seize) est l'entier naturel qui suit 15 et qui précède 17.
Les nombres premiers inférieurs à 20 sont : 2, 3, 5, 7, 11, 13, 17 et 19, mais la liste est sans fin.
Les vingt-cinq nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, et 97. De telles listes de nombres premiers inférieurs à une borne donnée, ou compris entre deux bornes, peuvent être obtenues grâce à diverses méthodes de calcul.
Le nombre 15 n'est pas un nombre premier, car il a plus de deux diviseurs : div (15) = {1, 3, 5, 15}. Le nombre 9 n'est pas un nombre premier, car il a plus de deux diviseurs : div (9) = {1, 3, 9}.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers.
Réponse: Il y a six multiples de 16 entre 100 et 200, soit 112, 128, 144, 160, 176 et 192. Quelle est la somme des vingt premiers multiples de 16? Réponse: La somme des vingt premiers multiples de 16 est 16 x (1 + 2 + 3 + …
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
0 est un diviseur de zéro. Les diviseurs de zéro sont les éléments non réguliers.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale.
Reconnaître les multiples des nombres d'usage courant : Pour savoir si un nombre est multiple de 2, ou de 5, ou de 15, etc. il suffit de faire la division de ce nombre par 2, ou par 5, ou par 15, etc. Si le quotient est exact et le reste nul, alors il est bien un multiple.
La moitié de 16 est : 8 ou 9 . La moitié de 20 est : 9 ou 10 . La moitié de 14 est : 6 ou 7 .
Valider par le groupe la réponse : la moitié de 16, c'est 8 parce que 8+8 = 16.
48 est multiple de 16.
0 n'est pas un nombre premier car il est divisible par n'importe quel nombre non-nul. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 sont tous les nombres premiers inférieurs à 30.
Contrairement au 12, certains nombres ne possèdent que 2 diviseurs, à savoir 1 et lui-même. Ce sont des nombres premiers. Exemple : 13 est un nombre premier, car il a pour diviseur 1 et 13.
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51. Pour que 51 soit un nombre premier, il aurait fallu que 51 ne soit divisible que par lui-même et par 1.
On doit la suite de Fibonacci à Léonard de Pise, également connu sous le nom de Leonardo Fibonacci, né en 1175 et auteur de nombreux manuscrits mathématique d'importance.
Propriétés. Le nombre 2 possède beaucoup de propriétés en mathématiques. 2 est le plus petit nombre premier ; c'est le seul pair. Malgré sa primalité, deux est aussi un nombre hautement composé, car il possède plus de diviseurs que 1.
En français, on utilise les chiffres arabes (0 à 9) et, dans certains contextes, les chiffres romains (I, V, X, L, C, D, M).