Pour rappel, les suites monotones regroupent les suites constantes, croissantes et décroissantes. ), la suite est dite strictement croissante.
Les fonctions constantes sont les seules fonctions simultanément croissantes et décroissantes. Toute fonction affine est monotone (strictement croissante si le taux d'accroissement est strictement positif, strictement décroissante si le taux d'accroissement est négatif).
On dit que : a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
Limites des suites géométriques. Soit (un) une suite géométrique de raison q et de premier terme u0 = 0. si q > 1, la suite diverge vers +∞ si u0 > 0, vers −∞ si u0 < 0. si q = 1, la suite (un) est constante et converge vers u0.
une suite constante est a la fois croissante et decroissante. Or toute suite croissante est minorée par son 1er terme , et toute suite decroissante et majorée par son 1er terme. d'ou Un bornée.
- Si la suite est décroissante nous avons ua ≥ ua+1 ≥ ua+2 ≥ ... ≥ un et elle est, de fait, majorée par son premier terme ua . - Si une suite est croissante ou si elle est décroissante, elle est dite monotone.
(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Une constante est un objet dont l'état reste inchangé durant toute l'exécution d'un programme. On ne peut jamais modifier sa valeur et celle-ci doit donc être précisée lors de la définition de l'objet. Une variable est un objet dont le contenu peut être modifié par une action.
Si la suite est croissante et majorée, elle converge. Si la suite est décroissante et minorée, elle converge.
Son sens de monotonie est donné par le signe de u1−u0 u 1 − u 0 . Si u1≥u0 u 1 ≥ u 0 , alors (un) est croissante, sinon (un) est décroissante. On conclut alors souvent de l'une des 2 façons suivantes : On arrive à prouver que (un) est bornée (parce que I l'est par exemple).
Une fonction est monotone lorsqu'elle est croissante sur I ou lorsqu'elle est décroissante sur I . Étudier le sens de variation d'une fonction, c'est découper son ensemble de définition en intervalles sur lesquels la fonction est croissante ou décroissante.
La remarque de Fred te permet alors de savoir si elle est croissante ou non pour n assez grand. La suite est monotone à partir d un certain rang p lorsque le quotient up+1up u p + 1 u p dépasse une certaine valeur.
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
Fonction définie dans l'ensemble des nombres réels par une relation de la forme f(x) = k, où k est un nombre réel.
1. Uniformité de ton, d'intonation, d'inflexion : Monotonie de la voix. 2. Manque lassant de variété, de diversité : La monotonie d'un paysage.
Les plus importantes sont : les constantes de compilation (à valeur statique), les constantes d'exécution (à valeur dynamique), les objets immuables et les types constants (const).
Une constante est un élément de données nommé comportant une valeur définie, alors qu'une variable est un élément de données nommé dont la valeur peut changer au cours de l'exécution d'un programme. Les variables peuvent être globales ou locales.
Autrement dit, peu importe la valeur en laquelle on l'étudie, la limite d'une fonction constante est toujours égale à la valeur de la constante. Dans notre cas, la constante vaut 30.
Monochrome, terne. My nephew insisted on wearing a monotone suit.
On suppose qu'il existe l > 0 tel que |f (x)| ≤ l < 1 pour tout x ∈ [a, b]. Soit u0 ∈ [a, b] et soit un la suite définie par récurrence par un+1 = f(un). Alors, la suite un converge vers l'unique point fixe α de f. De plus, si f (α) est = 0, il existe λ = 0 tel que l'on ait un −α ∼ λf (α)n.
Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.
On dit que la suite u est bornée lorsqu'elle est à la fois majorée et minorée. Si la suite u est une suite croissante et majorée, alors elle converge. Si la suite u est décroissante et minorée, alors elle converge. Si la suite u est majorée par M et convergente vers le nombre L, alors L ≤ M.
Toute suite convergente est par conséquent bornée (par exemple la suite un = (–1)n/(n + 1), qui converge vers 0, reste comprise entre u1 = –1/2 et u0 = 1). Toute suite réelle qui tend vers ±∞ est non bornée (par exemple : un = 2n, qui tend vers +∞).