1 - A partir d'une courbe Le ou les abscisses des points d'intersection avec la courbe (s'ils existent) sont les antécédents cherchés.
Lire les antécédents sur un graphe
Pour lire les antécédents, la marche à suivre est la suivante: On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
L'antécédent de " 1 ": Pour déterminer l'antécédent de " 1 ", il suffit de résoudre l'équation: f ( x) = 1. Calcul du discriminant = b2 - 4 ac: = 22 - 4 x 1 x 1 = 0.
Lecture graphique d'images et d'antécédents. Méthode L'axe des abscisses est l'axe horizontal, l'axe des ordonnées est l'axe vertical. On lit les antécédents sur l'axe des abscisses et les images sur l'axe des ordonnées.
Déterminer les abscisses des points d'intersection avec la courbe. On cherche ensuite, si elles existent, les abscisses des points d'intersection de C_f et de la droite d'équation y=a. Ces abscisses sont les antécédents de a par f.
La représentation graphique
L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.
1. Fait antérieur sur lequel on appuie un raisonnement, une conclusion : Invoquer un antécédent. 2. Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Quels sont les antécédents de 3 par la fonction f ? L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0.
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
1- Lire les informations apportées par les axes. 2- Repérer sur la courbe les points remarquables (maximum, minimum, point d'inflexion). 3- Découper la courbe en plusieurs parties. 4- Justifier chaque partie par des données chiffrées qui indiquent comment évolue le paramètre mesuré par rapport au paramètre qui a varié.
Pour résoudre l'équation f\left(x\right) = \alpha, si l'on connaît plusieurs expressions f\left(x\right), il peut être utile de sélectionner l'expression la plus appropriée (celle qui rend la résolution de l'équation f\left(x\right) = \alpha la plus simple possible). Le seul antécédent de 4 par f est -2.
Pour une fonction donnée f : X → Y, l'ensemble de définition est X et l'ensemble d'arrivée est Y. L'image f(X) de X par f, aussi appelée l'image de f, est en général seulement un sous-ensemble strict de Y. On a f(X) = Y si et seulement si f est une surjection.
En général, la lecture graphique ne donne que des valeurs approchées des images. Par exemple, l'image de -1 est comprise entre -1 et -2. les antécédents du nombre 3 par cette fonction sont -1 et 2. On lit le nombre 3 sur l'axe des ordonnées et les deux antécédents sur l'axe des abscisses.
Il s'agit de trouver le nombre x tel que h(x) = –10. Or, h(x) = 5x donc 5x = –10 ; soit x = = –2. L'antécédent de –10 par h est –2.
Image, antécédent
Remarque : par une fonction, une même image peut avoir plusieurs antécédents. Par contre, chaque antécédent n'a qu'une seule image.
Pour déterminer le ou les antécédents d'un nombre b par f , il suffit de résoudre l'équation ( )= f x b . de 4 par f . Pour déterminer le ou les antécédents éventuels de 3 par f , on commence par repérer 3 sur l'axe des ordonnées, puis on trace la droite passant par le point (0 ; 3) parallèle à l'axe des abscisses.
Calculer l'antécédent de 22 par la fonction f. Réponse : pour déterminer l'antécédent d'un nombre par une fonction affine, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 22 autrement dit 7x - 6 = 22, soit 7x = 28 et donc x=287 = 4, donc l'antécédent de 22 par f est 4.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
L'image de 0 par la fonction f est 0.
Un repère du plan est défini par trois points non alignés (O,I,J). Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées.