On utilise la factorisation avec les identités remarquables lorsque l'on ne peut repérer aucun facteur commun dans l'expression littérale. Les identités remarquables sont utilisées pour le développement mathématique d'expressions numériques. Mais on les utilise également à l'envers pour factoriser.
Définitions pour les règlesde calcul 📚
Pour rappel : Développer c'est transformer un produit en somme. Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérale des calculs possibles.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
Factoriser, c'est transformer une expression développée sous forme d'un produit de facteurs. La factorisation permet donc de simplifier des expressions, et surtout de résoudre des équations.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
Le facteur commun est la lettre "x" (elle se trouve dans chaque terme). La 2ème étape de la factorisation est de mettre en évidence le facteur commun. Note d'abord le facteur commun devant une parenthèse. Divise ensuite chaque terme par le facteur commun et note le résultat dans la parenthèse.
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
Règle. Pour passer de la forme factorisée à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de degré 2 sous la forme factorisée: f(x)=4(x−2)(x+7) f ( x ) = 4 ( x − 2 ) ( x + 7 ) .
Si on développe le produit (a+b)(a-b), on obtient a²-b². Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit.
La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.
Développer, c'est transformer un produit en somme algébrique. Réduire une somme algébrique, c'est l'écrire avec le moins de termes possibles. Factoriser, c'est transformer une somme algébrique en produit.
Une expression factorisée est l'écriture d'un produit. L'expression factorisée est 2 × (L + l). 2 × (a + b − 2) = 2 × a + 2 × b − 2 × 2 = 2a + 2b - 4. 5 + 15a + 5 = 5 × 9 + 5 × 3a + 5 × 1 = 5 × (9 + 3a + 1).
Factoriser une expression algébrique
Pour cela on peut chercher un facteur commun aux différents termes de la somme et utiliser en sens inverse les règles précédemment notées. ka + kb = k × a + k × b = k × (a + b) ka - kb = k × a - k × b = k × (a - b) On peut aussi reconnaitre une identité remarquable.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Un facteur est un terme qui intervient dans une multiplication. Exprime 56 sous la forme d'un produit de facteurs. Voici deux possibilités :56=2×28 ou 56=4×2×7 56 = 2 × 28 ou 56 = 4 × 2 × 7 Pour la première factorisation de 56 , les facteurs sont 2 et 28 .
Développer une expression consiste à l'écrire sous la forme d'une somme ou d'une soustraction. Cela revient à transformer une multiplication (ou un produit) de plusieurs termes semblables en une opération de sorte que l'on obtienne des formules de type : k x (a + b) = k x a + k x b.
𝑎 au cube moins 𝑏 au cube peut être factorisé sous la forme suivante : 𝑎 moins 𝑏 fois 𝑎 au carré plus 𝑎𝑏 plus 𝑏 au carré. Encore une fois, on peut le prouver en distribuant les parenthèses. La multiplication de 𝑎 par 𝑎 au carré plus 𝑎𝑏 plus 𝑏 au carré nous donne 𝑎 au cube plus 𝑎 au carré 𝑏 plus 𝑎𝑏 au carré.