Une énergie abondante : A masse égale, la fusion d'atomes légers libère une énergie près de quatre millions de fois supérieure à celle d'une réaction chimique telle que la combustion du charbon, du pétrole ou du gaz, et quatre fois supérieure à celle des réactions de fission nucléaire.
Le principal avantage de la fusion thermonucléaire est qu'elle libère une quantité d'énergie bien plus grande que la fission et ne produit pas de déchets radioactifs pendant des milliers d'années. De plus, le deutérium est quasiment inépuisable (il est présent dans l'eau) et le tritium est facile à produire.
La fusion nucléaire est une réaction nucléaire dans laquelle deux noyaux atomiques fusionnent pour créer un nouveau noyau au poids supérieur.
L'énergie de fusion représente l'énergie produite à partir de réactions de fusion nucléaire durant lesquelles deux atomes légers fusionnent pour produire un noyau plus lourd et dégager une certaine quantité d'énergie, principalement sous forme de chaleur.
Bombardée de neutrons, la couverture en béryllium du tokamak d'Iter va se désagréger rapidement — la durée de vie de ce métal dans un réacteur de fusion serait de cinq à dix ans 11. Il faudra non seulement remplacer ses modules régulièrement, mais évacuer après chaque expérience les poussières de béryllium.
Lorsque deux noyaux « légers » se percutent à grande vitesse, ils peuvent fusionner, créant un noyau plus lourd : c'est la fusion nucléaire. Durant l'opération, une partie de l'énergie de liaison des composants du noyau est libérée sous forme de chaleur ou de lumière.
Le but à long terme est de créer des prototypes de réacteurs capables de fonctionner en toute sûreté, respectueux de l'environnement et économiquement viables.
Les réacteurs à fusion du futur ne produiront pas de déchets nucléaires à longue période et haute activité, et la fusion du cœur du réacteur est pratiquement impossible.
C'est pourquoi les recherches en fusion se concentrent majoritairement sur la réaction entre deux isotopes de l'hydrogène : le deutérium et le tritium, étant la plus « facile » à réaliser bien qu'elle nécessite tout de même d'atteindre une température d'environ 150 millions de degrés.
Lors des travaux de mise au point de la fusion contrôlée, les ingénieurs et les chercheurs se heurtent à trois difficultés majeures : 1) la température, 2) la densité et 3) le confinement.
Incendie, risque sismique, étanchéité des composants... Plusieurs dangers pourraient solder le projet Iter par un échec. L'avenir de la fusion nucléaire en serait quand même protégé, tant les États et les magnats de l'industrie de la tech ou de l'énergie financent des recherches et des projets.
En 1934, Ernest Rutherford réalise la première réaction de fusion en laboratoire (entre atomes de deutérium).
Une fusion peut réduire la concurrence et donner un nouveau pouvoir de monopole à l'entreprise. Avec moins de concurrence et une plus grande part de marché, la nouvelle entreprise aura tendance à augmenter les prix envers les consommateurs.
ITER est le plus grand projet scientifique mondial des années 2010. Il contiendra le plus grand réacteur à fusion nucléaire du monde lors de son achèvement en 2025.
Deuxième « segment » de la chambre à vide finalisé La deuxième « section » de 40 degrés de la chambre à vide ITER sera finalisé au mois d'avril 2022. Construit autour du secteur n°1(7) fourni par la Corée, ce « sous-assemblage » a été finalisé plus vite que le premier grâce aux enseignements tirés.
200 millions de degrés : la température nécessaire pour réaliser la fusion nucléaire. D'autre part, pour augmenter la probabilité de fusion, on a recours à des isotopes. (atomes ayant le même nombre de protons. Ils constituent avec les neutrons le noyau de l'atome.
La conclusion est simple : si nous voulons libérer de l'énergie nucléaire, il nous faut : Soit assembler des petits noyaux pour en faire de plus gros ; c'est la fusion. Soit casser des gros noyaux pour en faire de moins gros : c'est la fission.
Aucun déchet radioactif de haute activité à vie longue : Les réacteurs de fusion nucléaire ne produisent pas de déchets radioactifs de haute activité à vie longue.
Il atteindrait sa pleine puissance au mieux en 2035, mais sans la certitude de devenir énergétiquement viable. Pour ce qui est des premiers réacteurs prévus pour une utilisation industrielle plus rentable que la fission, certains experts s'accordent à dire qu'il faudra attendre au moins 2040-2050.
La fusion nucléaire vise à l'effet inverse : il s'agit de rapprocher deux atomes d'hydrogène (deutérium et tritium) à des températures de plusieurs millions de degrés, comme au cœur des étoiles. Lorsque ces noyaux légers fusionnent, le nouveau noyau créé se retrouve dans un état instable.
Le processus de fusion nucléaire ne peut avoir lieu que dans des conditions de température et de pression particulières. A titre d'exemple, au cœur du Soleil, la pression est égale à 200 milliards de fois la pression atmosphérique terrestre et la température centrale atteint environ 15 millions de degrés.
Le combustible nucléaire pour la fusion est composé de deux isotopes de l'hydrogène le deutérium et le tritium. Le deutérium se trouve en abondance dans l'eau. Le tritium n'existe sur Terre qu'a l'état de trace.
La fusion nucléaire est une transformation nucléaire dans laquelle deux noyaux d'atomes légers s'associent pour former un unique noyau plus lourd. Les atomes souvent impliqués dans le mécanisme de fusion sont en général l'hydrogène et ses isotopes, le deutérium ou le tritium.