Propriété 1 : Si un point est sur la médiatrice d'un segment, alors il est à la même distance des deux extrémités du segment. Le point M appartient à la médiatrice de [AB].
Propriété : Si un point est équidistant des deux extrémités d'un segment, alors ce point appartient à la médiatrice de ce segment.
Une médiatrice est une droite perpendiculaire à un segment qui passe par le milieu de ce même segment. On peut tracer la médiatrice d'un segment de deux façons : Méthode avec un compas et une règle.
Définition
La médiatrice d'un segment est un axe de symétrie de ce segment. Je construis un segment [AB] et je place le milieu I de ce segment, puis à l'aide d'une équerre, je trace la droite Delta, perpendiculaire à [AB] et passant par son milieu comme ceci. Maintenant, quelles sont les propriétés de la médiatrice ?
La médiatrice d'un segment est la droite qui passe par le milieu de ce segment, et qui lui est perpendiculaire. La bissectrice est une demi-droite qui coupe un angle en deux. En fait, la médiatrice est la bissectrice d'un angle plat, à 180°.
Une médiatrice d'un triangle est une droite perpendiculaire au milieu d'un de ses côtés. Un triangle a donc 3 médiatrices. On peut démontrer la propriété suivante. Théorème - Les trois médiatrice d'un triangle se coupent en un même point.
Si un point M appartient à la médiatrice (d) d'un segment [AB] alors il est à égale distance de A et de B. On a : MA = MB. Si un point M est à égale distance de deux points A et B, alors M est sur la médiatrice de [AB].
Tracer la droite passant perpendiculairement par le milieu d'un côté On trace la droite passant perpendiculairement et par le milieu d'un premier côté. On obtient la première médiatrice. On trace la droite passant perpendiculairement par le milieu de \left[ BC\right], c'est-à-dire la médiatrice de \left[ BC\right].
Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Milieu, médiatrice, plan médiateur
L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB]. Le milieu du segment [AB] peut donc être défini comme l'intersection de la droite (AB) avec la médiatrice du segment [AB].
La médiatrice d'un segment est la droite perpendiculaire à ce segment en son milieu. G est le milieu du segment [AB] et $d \perp (AB)$ donc d est la médiatrice du segment [AB].
Le point de concours des médiatrices d'un triangle est le centre du cercle circonscrit au triangle.
Première méthode : avec une règle graduée et une équerre On commence par placer le milieu I du segment avec la règle. Puis on trace la perpendiculaire à [AB] passant par I avec l'équerre. On prolonge ensuite le trait avec la règle pour obtenir toute la médiatrice.
Un point M est sur le segment [AB] si et seulement si ABk AM = avec 0 < k < 1 .
Une demi-droite est une droite délimitée par un point d'un côté et infinie de l'autre. Elle est désignée par une lettre majuscule entre crochets d'un côté et une autre lettre majuscule entre parenthèses de l'autre. Un segment est un morceau de droite délimité par deux points appelés « extrémités ».
Une hauteur est un segment qui relie un sommet à son côté opposé et qui est perpendiculaire à ce côté opposé.
Le point d'intersection des médiatrices est le centre du cercle circonscrit au triangle. a) Médiane : Une médiane d'un triangle est une droite qui passe par un sommet de ce triangle et par le milieu du côté opposé à ce sommet.
Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Définition : La médiatrice d'un segment est la droite qui coupe ce segment perpendiculairement en son milieu. Propriété : La médiatrice d'un segment est la droite constituée de tous les points qui sont à égale distance des extrémités de ce segment.
Cercle circonscrit à un triangle
Le centre du cercle est donc équidistant des sommets du triangle. Afin de trouver ce centre, il faut tracer les médiatrices des triangles, qui sont les droites passant par le milieu des côtés perpendiculairement et le centre se trouve au point de concours des médiatrices.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle.
Dans un triangle, une médiane est un segment qui relie un sommet au milieu du côté opposé. Chaque médiane divise un triangle en deux triangles d'aires égales. Si le triangle est non plat, les trois médianes sont concourantes en un point appelé centre de gravité.
Médiatrice d'un segment : Droite qui passe perpendiculairement en son milieu, Hauteur d'un triangle : Droite qui est perpendiculaire à un côté et qui passe par le sommet opposé, Médiane d'un triangle : Droite qui passe par le milieu d'un côté et par le sommet opposé.