Lauréat du prix Nobel de physique en 1983, il décrit le phénomène de « trou noir », terme est inventé par le physicien américain John Wheeler en 1967. En 1971, les astronomes découvrent le premier trou noir en étudiant la constellation du cygne.
Le premier trou noir fut détecté en 1971 dans la constellation du Cygne. En 1974, Bruce Balick et Robert L. Brown détectent un astre extrêmement massif au centre de la Voie Lactée qu'ils baptisent Sagittarius A*. Il a fallu attendre la fin des années 1990 pour que sa nature de trou noir supermassif soit prouvée.
1783 : dans le cadre de la théorie corpusculaire de la lumière, John Michell énonce la première notion de trou noir newtonien (en se servant des lois de Newton de la gravitation).
En observant le comportement d'une étoile tournant autour du trou noir situé au centre de notre galaxie, les scientifiques ont confirmé que le champ gravitationnel intense de ce mystérieux objet cosmique avait un effet sur la lumière stellaire, retardant considérablement le voyage dans l'espace de ses visiteurs.
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Comme l'infini dans la nature, ça n'existe pas, on en déduit une chose, c'est qu'on ne sait pas. On pense que toute matière ordinaire a disparu. Dans le trou noir, il n'y a donc pas, après cette aventure, une fusée et un spationaute égaré de plus. Il y a toujours le vide.
Notre univers pourrait bien se trouver dans un vaste trou noir. Remontons le temps : avant la venue de l'Homme, avant l'apparition de la Terre, avant la formation du soleil, avant la naissance des galaxies, avant toute lumière… il y a eu le Big Bang. C'était il y a 13,8 milliards d'années. Mais avant cela ?
Mais pour les trous noirs supermassifs, l'intégralité du processus semble plus difficile à observer : ces objets absorbent lentement le gaz situé au centre des galaxies. On parle d'échelles de temps de milliers d'années, le processus est donc hors de portée des observations humaines.
le centre de la galaxie M87, le trou noir supermassif M87* émettant un jet découvert en 1997 et ayant une masse de 6,8 milliards de masses solaires située dans un rayon de seulement dix années-lumière ; J1148+5251, contenant un trou noir supermassif de plusieurs milliards de fois la masse du Soleil.
Un trou noir dormant (image d'illustration). C'est le plus proche de notre planète que nous ayons découvert : un nouveau trou noir de masse stellaire se trouve à environ 1.600 années-lumière (une année-lumière équivaut à 9.461 milliards de kilomètres) dans la constellation d'Ophiuchus.
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
On peut y entendre un chant mystérieux qui évoque le bruit du vent soufflant au loin. L'astrophysicien spécialiste des trous noirs Frédéric Marin a décrit ce son comme étant « profond, lourd, comme le bruit du vent au fond d'un abîme ».
Un trou noir est un objet céleste qui piège toute forme de rayonnement. Cela est dû à sa compacité, c'est-à-dire à son rapport masse/taille très élevé, qui crée un champ gravitationnel si intense qu'aucun rayonnement ne peut s'en échapper. Cela est aussi valable pour la matière.
Ce trou noir, répondant au doux nom de NGC 1227, aurait une masse équivalent à 17 milliards de fois celle de notre soleil. Il se situerait à 220 millions d'années-lumière de nous. ESPACE - La gueule de ce trou noir est énorme: onze fois plus large que l'orbite de la planète Neptune autour du Soleil.
EHT, le "télescope" qui a photographié le trou noir de notre galaxie. Le réseau mondial de télescopes EHT a dévoilé ce jeudi 12 mai la première photo du trou noir de notre galaxie, Sagittaire A*.
Surnommé « la Licorne », cet étrange objet stellaire semble être le plus petit trou noir jamais découvert. Il pourrait aider les astrophysiciens à résoudre l'un des plus grands mystères de l'univers. À près de 1 500 années-lumière de la Terre, un petit trou noir orbite autour d'une étoile géante.
Et si l'on ose aller un peu plus loin, on peut attribuer au Grand Mur d'Hercule-Couronne boréale, le titre de plus grand objet de notre Univers. De plus grande structure de notre Univers observable, plus exactement. Puisque le Grand Mur d'Hercule-Couronne boréale est une sorte de filament galactique.
C'est mission impossible. Le trou noir, c'est une sphère… noire dont aucun rayon lumineux ne peut sortir. En revanche, la matière qu'il aspire forme un disque très lumineux autour de lui.
Imaginons que l'on puisse avoir un trou noir équivalent à une masse solaire, même si ce n'est pas possible (il faut une masse minimale pour que les trous noirs puissent se former, située entre 3 et 5 masses solaires). Sa température serait « de l'ordre d'un dix-millionième de kelvins ».
Selon la théorie de la gravité quantique à boucles, les trous blancs seraient le destin ultime des trous noirs. La matière qui s'est effondrée dans un trou noir ressort alors de l'astre lorsque celui-ci se transforme en trou blanc.
Quelle est la durée de vie d'un trou noir ? Stephen Hawking a mis en évidence un paradoxe : les trous noirs ne le sont pas totalement, car ils émettent des particules et peuvent s'évaporer, jusqu'à disparaitre totalement. Ce phénomène se produit sous la forme d'un rayonnement, appelé rayonnement de Hawking.
La force gravitationnelle du trou noir est si forte que le temps sur cette exoplanète s'écoule plus lentement avec un ratio de 1 heure pour 7 années terrestres.
Les caractéristiques du bruit cosmique sont semblables à celles de bruit thermique. Sa fréquence est estimée légèrement au-dessus de 15 Mhz. Ces mesures ont été effectuées en pointant l'antenne non seulement vers le Soleil, mais aussi vers certaines autres régions du ciel semblables au centre de la Galaxie.