Sciences. La lettre majuscule Δ est souvent utilisée en sciences et mathématiques pour nommer une différence entre deux grandeurs, delta étant l'initiale du mot grec διαφορά (diaphorá), « différence ». L'opérateur laplacien est noté Δ ; l'opérateur nabla prend la forme d'un delta renversé, ∇.
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
le Delta est un intermédiaire de calcul qui permet de savoir si l'équation a 0, 1 ou 2 solutions. Il y aura dans la suite des cours des tas d'exemples où il sera utile de savoir résoudre ces équations (notamment en physique et chimie, mais pas seulement).
Définition : On appelle discriminant du trinôme ax2 + bx + c , le nombre réel, noté A, égal à b2 − 4ac . Exemple : Le discriminant de l'équation 3x2 − 6x − 2 = 0 est : ∆ = (-6)2 – 4 x 3 x (-2) = 36 + 24 = 60. En effet, a = 3, b = -6 et c = -2. Propriété : Soit A le discriminant du trinôme ax2 + bx + c .
- Si Δ > 0, alors l'équation admet deux solutions réelles notées x1 et x2. On a alors : x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0.
Si Δ = 0 alors l' équation admet une solution double x = −b/2a. Si Δ >0 alors l' équation admet deux solutions distinctes x' et x' telles que: x' =( −b + √Δ ) / 2a et x'' =(
Le signe de Δ indique le nombre de racines réelles : si Δ > 0 , alors il y a deux solutions réelles distinctes ; si Δ = 0 , alors il y a une solution réelle répétée ; si Δ < 0 , alors il n'y a pas de solutions réelles.
On peut remarquer que √0=0, √1=1, √4=2, √9=3, √16=4, …
avec α = − b 2a et β = − b2 − 4ac 4a .
Les deux racines distinctes sont 1 et 2. Il y a deux solutions, mais deux fois la même, on dit alors qu'on a une racine double.
Étape 0 (éventuelle) : Mets l'équation sous la forme ax2+bx+c=0. Étape 1 : Identifie les coefficiens a, b et c de l'expression du second degré. Étape 2 : Calcule le discriminant Δ en remplaçant a, b et c par leurs valeurs dans la formule Δ=b2−4ac. Étape 3 : Effectue les opérations en respectant les priorités de calcul.
Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes. Son usage permet de mieux comprendre les coniques et les quadriques en général. On le retrouve dans l'étude des formes quadratiques ou celle des corps de nombres dans le cadre de la théorie de Galois ou celle des nombres algébriques.
"Le rhésus est dit positif quand l'antigène D est présent sur les globules rouges et il est négatif lorsque les globules rouges n'ont pas cet antigène. La majeure partie de la population possède l'antigène D ; en France, seulement 15% des personnes sont rhésus négatif.
Re : delta prime
De mémoire, on se servait de Delta' quand le coef de x était pair. genre ax²+2bx+c=0. Bref, on peut simplifier par 2. Ça n'a aucun intérêt, même à la glorieuse époque où les calculatrices n'existaient pas.
Si le discriminant est négatif, alors l'équation n'admet AUCUNE solution réelle, l'ensemble des solutions réelles est donc l'ensemble vide. exemple : Résoudre l'équation : 6x² - x - 1 = 0.
On place les valeurs pour lesquelles f change de sens de variation dans la première ligne du tableau de variations. On trace une flèche qui monte dans la deuxième ligne du tableau lorsque f est croissante et une flèche qui descend lorsque f est décroissante.
➔ Le nombre Δ = b2 - 4ac est appelé discriminant de l'équation (appellation due à Sylvester en 1851, du latin discrimen = séparation) : l'étude de son signe permet de conclure quant au nombre et aux valeurs des racines de l'équation.
Δ (delta majuscule)
correspond à une variation au sens le plus général, c'est-à-dire à une différence entre deux quantités.
C'est une dénomination professionnelle de chauffagistes ou climaticiens utilisée principalement pour des calculs techniques comme les calcul de puissances thermique et autre. Le delta T (ΔT) représente la différence de deux températures. On parle également de ΔP (différence de pressions), …
Représenté par la lettre grecque"π", Pi est ce qu'on appelle un nombre irrationnel. C'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction comprenant deux nombres entiers. Si ce symbole existe depuis l'époque babylonienne, c'est le mathématicien grec Archimède qui, en 250 avant J.
Pour cela : il faut calculer la variation absolue c'est-à-dire la différence entre la valeur d'arrivée et la valeur de départ ; on divise cette valeur par la valeur de départ ; on multiplie le tout par 100.
Pour résoudre, il faut 'isoler' le x (nom choisi ici pour l'inconnue) en se 'débarrassant' de ce qui l'entoure. 2x + 8 - 8 = 5 - 8 -----> Pour cela on soustrait 8 aux deux membres, ainsi à gauche il n'y a plus de + 8 (cela s'annule) et à droite apparaît le terme - 8.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Additionner et soustraire des fractions
Pour calculer la somme ou la différence de deux nombres en écriture fractionnaire : Il faut d'abord réduire les deux nombres en écriture fractionnaire au même dénominateur. Ensuite, on additionne ou on soustrait les numérateurs et on garde le dénominateur commun.