Les pourcentages Un pour cent (ou 1 %) correspond au centième du total ou de l'ensemble, de sorte qu'il est obtenu en divisant le total ou le nombre entier par 100. 70 exprimé en % de 250 = (70 x 100) ÷ 250 = 28 %. Pour calculer la différence de pourcentage entre deux nombres, on utilisera les mêmes calculs de base.
On divise chaque effectif par l'effectif total, puis on multiplie le résultat par 100 : (10 ÷ 50) × 100 = 0,20 × 100.
Pour convertir un pourcentage en nombre avec une calculatrice, il vous suffit de multiplier la valeur totale par la fraction de pourcentage. Pour calculer 30 % de 150, vous ferez 150 × 30/100 soit 150 × 0,3.
Calculer une proportion Méthode
Afin de calculer une proportion, on divise l'effectif du caractère recherché par l'effectif total.
Exemple : Dans un collège, 200 élèves sont inscrits (valeur totale), 18 % (pourcentage) d'entre eux sont en classe de Troisième. Pour déterminer combien d'élèves étudient en Troisième, le calcul est : 200 x (18 / 100) = 36.
Selon la règle de proportionnalité, aussi appelée règle de trois, les produits des nombres en diagonale sont égaux soit a × d = b × c.
De même, réduire une valeur d'un nombre de 71 %, revient à multiplier ce nombre par 0,29. ► Augmenter la valeur d'un nombre de 26 %, revient à multiplier ce nombre par 1,26, car on ajoute 26 % à 100 %. De même, augmenter la valeur d'un nombre de 7 %, revient à multiplier ce nombre par 1,07.
Les pourcentages
Un pour cent (ou 1 %) correspond au centième du total ou de l'ensemble, de sorte qu'il est obtenu en divisant le total ou le nombre entier par 100. 70 exprimé en % de 250 = (70 x 100) ÷ 250 = 28 %. Pour calculer la différence de pourcentage entre deux nombres, on utilisera les mêmes calculs de base.
Une proportion est une partie, une part ou un nombre qui est envisagé par rapport à tout. La plus petite valeur d'une proportion est 0, tandis que la plus grande valeur possible est 1. Une proportion peut être exprimée en pourcentage en multipliant sa valeur par 100.
Alors p = p1 x p2 est la proportion de A dans C. Sur 67 millions d'habitants en France, 66 % de la population est en âge de travailler (15-64 ans). La population active représente 70 % de la population en âge de travailler.
Le résultat est exprimé en pourcentage (avec des chiffres absolus, on parlerait seulement d'une différence), et est appelé taux de variation, ou encore variation en pourcentage. Elle est calculée comme suit: [(nombre au moment ultérieur ÷ nombre au moment antérieur) — 1] × 100.
Il existe une formule simple qui permet de calculer le pourcentage d'augmentation d'un salaire : ([nouvelle valeur - ancienne valeur] / ancienne valeur) x 100. Le pourcentage d'augmentation du salaire est de 6,82 %.
Multipliez 0.65 par 100 pour convertir en pourcentage.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
Règle : La moyenne d'une série statistique est le nombre obtenu en - additionnant toutes les valeurs de la série - divisant cette somme par l'effectif total. Exemple : Voici mes notes en SVT ce trimestre : 7; 14 et 9. Ou en un seul calcul : Ma moyenne en SVT est donc de 10.
L'effectif corrigé d'une classe est égal au rapport de l'effectif de la dite classe sur la largeur de la classe. Un paramètre statistique permet de résumer par une seule quantité numérique une information contenue dans une distribution d'observations.
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
la fréquence est bien une proportion (bien particulière) exprimée en pourcentage. C'est aussi un taux, ou un rapport, ou un quota, ou un ratio, ... tous ces mots ayant des acceptions moins précises.
Un ratio n'est pas un écart, un écart est calculé par une différence entre deux informations (exemple : X – Y = Z ), un ratio quant à lui est la division de deux informations une en numérateur et l'autre en dénominateur (exemple : (Y/X * 100 = Z) ou (W-X)/Y *100 = Z).
Le coefficient multiplicateur permet d'étudier l'évolution de la valeur d'une variable entre deux dates. Ainsi, il est obtenu en divisant la valeur d'arrivée par la valeur de départ. S'il est supérieur à 1, le coefficient multiplicateur traduit une augmentation.
Pour trouver cet inverse, il faut ajouter 1 devant le pourcentage , puis diviser le nombre par 100 .
Multipliez 360 par 100 pour convertir en pourcentage.
Notre pensée semble naturellement additive. Si l'on ajoute 10% et à nouveau 10%, on voudrait que ce soit en tout 20%. Pourtant, c'est faux ! Les taux ne s'additionnent pas, ils se multiplient.
Exemple : La population d'un village est passée de 8500 à 10400 entre 2008 et 2012. Il s'agit ici d'une augmentation de 10400 – 8500 = 1900 habitants (variation absolue). Le taux d'évolution de la population est donc : t = 1900 8500 ≈ 0,224 = 22,4%.